Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix

<p>The dynamics of partially molten regions of the Earth's mantle are studied using a combination of theoretical, experimental, and numerical techniques. The physical model is based on experimental observations of partially molten ultramafic rocks and incorporates two elements: buoyancy-d...

Full description

Bibliographic Details
Main Author: Scott, David Russell
Format: Others
Language:en
Published: 1987
Online Access:https://thesis.library.caltech.edu/11448/2/Scott_DR_1987.pdf
Scott, David Russell (1987) Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/mvdj-ty73. https://resolver.caltech.edu/CaltechTHESIS:04052019-172938000 <https://resolver.caltech.edu/CaltechTHESIS:04052019-172938000>
id ndltd-CALTECH-oai-thesis.library.caltech.edu-11448
record_format oai_dc
spelling ndltd-CALTECH-oai-thesis.library.caltech.edu-114482021-04-17T05:02:14Z https://thesis.library.caltech.edu/11448/ Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix Scott, David Russell <p>The dynamics of partially molten regions of the Earth's mantle are studied using a combination of theoretical, experimental, and numerical techniques. The physical model is based on experimental observations of partially molten ultramafic rocks and incorporates two elements: buoyancy-driven porous flow of magma through a viscously deformable matrix, and buoyancy-driven circulation of the whole rock.</p> <p>The first element of this model is analogous to buoyancy-driven pipe flow of a liquid through a denser and more viscous wall fluid. Laboratory experiments on this system illustrate the phenomenon of solitary waves. These are waves of larger pipe radius that ascend a uniform pipe of smaller radius. The waves are very nearly conserved in collisions. These, and the corresponding waves of higher porosity that arise in one-dimensional porous flow, are characterized further by analysis and numerical experiments.</p> <p>The full system, incorporating circulation in a multidimensional porous medium, also displays solitary waves governed by the same basic processes as the one-dimensional waves. Analysis and numerical experiments show that the multidimensional waves have a circular or spherical form.</p> <p>A possible natural manifestation of this fluid dynamical phenomenon is in igneous processes. Magmons, as the waves are called in that setting, probably have wavelengths of kilometers and velocities of centimeters per year. Magma ascent in magmons may account for episodicity in igneous emplacement. Also, a magmon can collect and mobilize a small degree of partial melt without disturbing its geochemical signature. In a partially molten region the characteristic wavelength of magmons will always be superimposed on that of large scale variations in porosity.</p> 1987 Thesis NonPeerReviewed application/pdf en other https://thesis.library.caltech.edu/11448/2/Scott_DR_1987.pdf Scott, David Russell (1987) Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/mvdj-ty73. https://resolver.caltech.edu/CaltechTHESIS:04052019-172938000 <https://resolver.caltech.edu/CaltechTHESIS:04052019-172938000> https://resolver.caltech.edu/CaltechTHESIS:04052019-172938000 CaltechTHESIS:04052019-172938000 10.7907/mvdj-ty73
collection NDLTD
language en
format Others
sources NDLTD
description <p>The dynamics of partially molten regions of the Earth's mantle are studied using a combination of theoretical, experimental, and numerical techniques. The physical model is based on experimental observations of partially molten ultramafic rocks and incorporates two elements: buoyancy-driven porous flow of magma through a viscously deformable matrix, and buoyancy-driven circulation of the whole rock.</p> <p>The first element of this model is analogous to buoyancy-driven pipe flow of a liquid through a denser and more viscous wall fluid. Laboratory experiments on this system illustrate the phenomenon of solitary waves. These are waves of larger pipe radius that ascend a uniform pipe of smaller radius. The waves are very nearly conserved in collisions. These, and the corresponding waves of higher porosity that arise in one-dimensional porous flow, are characterized further by analysis and numerical experiments.</p> <p>The full system, incorporating circulation in a multidimensional porous medium, also displays solitary waves governed by the same basic processes as the one-dimensional waves. Analysis and numerical experiments show that the multidimensional waves have a circular or spherical form.</p> <p>A possible natural manifestation of this fluid dynamical phenomenon is in igneous processes. Magmons, as the waves are called in that setting, probably have wavelengths of kilometers and velocities of centimeters per year. Magma ascent in magmons may account for episodicity in igneous emplacement. Also, a magmon can collect and mobilize a small degree of partial melt without disturbing its geochemical signature. In a partially molten region the characteristic wavelength of magmons will always be superimposed on that of large scale variations in porosity.</p>
author Scott, David Russell
spellingShingle Scott, David Russell
Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix
author_facet Scott, David Russell
author_sort Scott, David Russell
title Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix
title_short Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix
title_full Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix
title_fullStr Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix
title_full_unstemmed Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix
title_sort magmons: solitary waves arising in the buoyant ascent of magma by porous flow through a viscously deformable matrix
publishDate 1987
url https://thesis.library.caltech.edu/11448/2/Scott_DR_1987.pdf
Scott, David Russell (1987) Magmons: Solitary Waves Arising in the Buoyant Ascent of Magma by Porous Flow through a Viscously Deformable Matrix. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/mvdj-ty73. https://resolver.caltech.edu/CaltechTHESIS:04052019-172938000 <https://resolver.caltech.edu/CaltechTHESIS:04052019-172938000>
work_keys_str_mv AT scottdavidrussell magmonssolitarywavesarisinginthebuoyantascentofmagmabyporousflowthroughaviscouslydeformablematrix
_version_ 1719396949459730432