Definable Combinatorics of Graphs and Equivalence Relations

<p>Let <b>D</b> = (<i>X</i>, <i>D</i>) be a Borel directed graph on a standard Borel space <i>X</i> and let <i>χ<sub>B</sub></i>(<b>D</b>) be its Borel chromatic number. If <i>F</i><sub>0</...

Full description

Bibliographic Details
Main Author: Meehan, Connor George Walmsley
Format: Others
Published: 2018
Online Access:https://thesis.library.caltech.edu/11006/1/meehan_connor_2018.pdf
Meehan, Connor George Walmsley (2018) Definable Combinatorics of Graphs and Equivalence Relations. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/45E4-MC27. https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760 <https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760>
id ndltd-CALTECH-oai-thesis.library.caltech.edu-11006
record_format oai_dc
collection NDLTD
format Others
sources NDLTD
description <p>Let <b>D</b> = (<i>X</i>, <i>D</i>) be a Borel directed graph on a standard Borel space <i>X</i> and let <i>χ<sub>B</sub></i>(<b>D</b>) be its Borel chromatic number. If <i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub>: <i>X</i> → <i>X</i> are Borel functions, let <b>D</b><sub><i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub></sub> be the directed graph that they generate. It is an open problem if <i>χ<sub>B</sub></i>(<b>D</b><sub><i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub></sub>) ∈ {1, …, 2<i>n</i> + 1, ℵ<sub>0</sub>}. Palamourdas verified the foregoing for commuting functions with no fixed points. We show here that for commuting functions with the property that there is a path from each <i>x</i> ∈ <i>X</i> to a fixed point of some <i>F<sub>j</sub></i>, there exists an increasing filtration <i>X</i> = ⋃<sub><i>m</i> &lt; <i>ω</i></sub> <i>X<sub>m</sub></i> such that <i>χ<sub>B</sub></i>(<b>D</b><sub><i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub></sub>↾ <i>X</i><sub>m</sub>) ≤ 2<i>n</i> for each <i>m</i>. We also prove that if <i>n</i> = 2 in the previous case, then <i>χ<sub>B</sub></i>(<b>D</b><sub><i>F</i><sub>0</sub>, <i>F</i><sub>1</sub></sub>) ≤ 4. It follows that the approximate measure chromatic number <i>χ<sup>ap</sup><sub>M</sub></i>(<b>D</b>) ≤ 2<i>n</i> + 1 when the functions commute.</p> <p>If <i>X</i> is a set, <i>E</i> is an equivalence relation on <i>X</i>, and <i>n</i> ∈ <i>ω</i>, then define [<i>X</i>]<sup><i>n</i></sup><sub><i>E</i></sub> = {(<i>x</i><sub>0</sub>, ..., <i>x</i><sub><i>n</i> - 1</sub>) ∈ <sup><i>n</i></sup><i>X</i>: (∀<i>i</i>,<i>j</i>)(<i>i</i> ≠ <i>j</i> → ¬(<i>x<sub>i</sub></i> <i>E</i> <i>x<sub>j</sub></i>))}. For <i>n</i> ∈ <i>ω</i>, a set <i>X</i> has the <i>n</i>-Jónsson property if and only if for every function <i>f</i>: [<i>X</i>]<sup><i>n</i></sup><sub>=</sub> → <i>X</i>, there exists some <i>Y</i> ⊆ <i>X</i> with <i>X</i> and <i>Y</i> in bijection so that <i>f</i>[[<i>Y</i>]<sup><i>n</i></sup><sub>=</sub>] ≠ <i>X</i>. A set <i>X</i> has the Jónsson property if and only for every function <i>f</i> : (⋃<sub><i>n</i> ∈ <i>ω</i></sub> [<i>X</i>]<sup><i>n</i></sup><sub>=</sub>) → <i>X</i>, there exists some <i>Y</i> ⊆ <i>X</i> with <i>X</i> and <i>Y</i> in bijection so that <i>f</i>[⋃<sub><i>n</i> ∈ <i>ω</i></sub> [<i>Y</i>]<sup><i>n</i></sup><sub>=</sub>] ≠ <i>X</i>. Let <i>n</i> ∈ <i>ω</i>, <i>X</i> be a Polish space, and <i>E</i> be an equivalence relation on <i>X</i>. <i>E</i> has the <i>n</i>-Mycielski property if and only if for all comeager <i>C</i> ⊆ <sup><i>n</i></sup><i>X</i>, there is some Borel <i>A</i> ⊆ <i>X</i> so that <i>E</i> ≤<sub><i>B</i></sub> <i>E</i> ↾ <i>A</i> and [<i>A</i>]<sup><i>n</i></sup><sub><i>E</i></sub> ⊆ <i>C</i>. The following equivalence relations will be considered: <i>E</i><sub>0</sub> is defined on <sup><i>ω</i></sup>2 by <i>x</i> <i>E</i><sub>0</sub> <i>y</i> if and only if (∃<i>n</i>)(∀<i>k</i> &gt; <i>n</i>)(<i>x</i>(<i>k</i>) = <i>y</i>(<i>k</i>)). <i>E</i><sub>1</sub> is defined on <sup><i>ω</i></sup>(<sup><i>ω</i></sup>2) by <i>x</i> <i>E</i><sub>1</sub> <i>y</i> if and only if (∃<i>n</i>)(∀<i>k</i> &gt; <i>n</i>)(<i>x</i>(<i>k</i>) = <i>y</i>(<i>k</i>)). <i>E</i><sub>2</sub> is defined on <sup><i>ω</i></sup>2 by <i>x</i> <i>E</i><sub>2</sub> <i>y</i> if and only if ∑{<sup>1</sup>⁄<sub>(<i>n</i> + 1)</sub>: <i>x</i>(<i>n</i>) ≠ <i>y</i>(<i>n</i>)} &lt; ∞. <i>E</i><sub>3</sub> is defined on <sup><i>ω</i></sup>(<sup><i>ω</i></sup>2) by <i>x</i> <i>E</i><sub>3</sub> <i>y</i> if and only if (∀<i>n</i>)(<i>x</i>(<i>n</i>) <i>E</i><sub>0</sub> <i>y</i>(<i>n</i>)). Holshouser and Jackson have shown that ℝ is Jónsson under AD. The present research will show that <i>E</i><sub>0</sub> does not have the 3-Mycielski property and that <i>E</i><sub>1</sub>, <i>E</i><sub>2</sub>, and <i>E</i><sub>3</sub> do not have the 2-Mycielski property. Under ZF + AD, <sup><i>ω</i></sup>2/<i>E</i><sub>0</sub> does not have the 3-Jónsson property.</p> <p>Let <b>G</b> = (<i>X</i>, <i>G</i>) be a graph and define for <i>b</i> ≥ 1 its <i>b</i>-fold chromatic number <i>χ</i><sup>(<i>b</i>)</sup>(<b>G</b>) as the minimum size of <i>Y</i> such that there is a function <i>c</i> from <i>X</i> into <i>b</i>-sets of <i>Y</i> with <i>c</i>(<i>x</i>) ∩ <i>c</i>(<i>y</i>) = ∅ if <i>x</i> <i>G</i> <i>y</i>. Then its fractional chromatic number is <i>χ</i><sup><i>f</i></sup>(<b>G</b>) = inf<sub><i>b</i></sub> <sup><i>χ</i><sup>(<i>b</i>)</sup>(<b>G</b>)</sup>⁄<sub><i>b</i></sub> if the quotients are finite. If <i>X</i> is Polish and <b>G</b> is a Borel graph, we can also define its fractional Borel chromatic number <i>χ</i><sup><i>f</i></sup><sub><i>B</i></sub>(<b>G</b>) by restricting to only Borel functions. We similarly define this for Baire measurable and <i>μ</i>-measurable functions for a Borel measure <i>μ</i>. We show that for each countable graph <b>G</b>, one may construct an acyclic Borel graph <b>G</b>' on a Polish space such that <i>χ</i><sup><i>f</i></sup><sub><i>BM</i></sub>(<b>G</b>') = <i>χ</i><sup><i>f</i></sup>(<b>G</b>) and <i>χ</i><sub><i>BM</i></sub>(<b>G</b>') = <i>χ</i>(<b>G</b>), and similarly for <i>χ</i><sup><i>f</i></sup><sub><i>μ</i></sub> and <i>χ</i><sub><i>μ</i></sub>. We also prove that the implication <i>χ</i><sup><i>f</i></sup>(<b>G</b>) = 2 ⇒ <i>χ</i>(<b>G</b>) = 2 is false in the Borel setting.</p>
author Meehan, Connor George Walmsley
spellingShingle Meehan, Connor George Walmsley
Definable Combinatorics of Graphs and Equivalence Relations
author_facet Meehan, Connor George Walmsley
author_sort Meehan, Connor George Walmsley
title Definable Combinatorics of Graphs and Equivalence Relations
title_short Definable Combinatorics of Graphs and Equivalence Relations
title_full Definable Combinatorics of Graphs and Equivalence Relations
title_fullStr Definable Combinatorics of Graphs and Equivalence Relations
title_full_unstemmed Definable Combinatorics of Graphs and Equivalence Relations
title_sort definable combinatorics of graphs and equivalence relations
publishDate 2018
url https://thesis.library.caltech.edu/11006/1/meehan_connor_2018.pdf
Meehan, Connor George Walmsley (2018) Definable Combinatorics of Graphs and Equivalence Relations. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/45E4-MC27. https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760 <https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760>
work_keys_str_mv AT meehanconnorgeorgewalmsley definablecombinatoricsofgraphsandequivalencerelations
_version_ 1719261371860779008
spelling ndltd-CALTECH-oai-thesis.library.caltech.edu-110062019-10-05T03:05:25Z Definable Combinatorics of Graphs and Equivalence Relations Meehan, Connor George Walmsley <p>Let <b>D</b> = (<i>X</i>, <i>D</i>) be a Borel directed graph on a standard Borel space <i>X</i> and let <i>χ<sub>B</sub></i>(<b>D</b>) be its Borel chromatic number. If <i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub>: <i>X</i> → <i>X</i> are Borel functions, let <b>D</b><sub><i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub></sub> be the directed graph that they generate. It is an open problem if <i>χ<sub>B</sub></i>(<b>D</b><sub><i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub></sub>) ∈ {1, …, 2<i>n</i> + 1, ℵ<sub>0</sub>}. Palamourdas verified the foregoing for commuting functions with no fixed points. We show here that for commuting functions with the property that there is a path from each <i>x</i> ∈ <i>X</i> to a fixed point of some <i>F<sub>j</sub></i>, there exists an increasing filtration <i>X</i> = ⋃<sub><i>m</i> &lt; <i>ω</i></sub> <i>X<sub>m</sub></i> such that <i>χ<sub>B</sub></i>(<b>D</b><sub><i>F</i><sub>0</sub>, …, <i>F</i><sub><i>n</i>-1</sub></sub>↾ <i>X</i><sub>m</sub>) ≤ 2<i>n</i> for each <i>m</i>. We also prove that if <i>n</i> = 2 in the previous case, then <i>χ<sub>B</sub></i>(<b>D</b><sub><i>F</i><sub>0</sub>, <i>F</i><sub>1</sub></sub>) ≤ 4. It follows that the approximate measure chromatic number <i>χ<sup>ap</sup><sub>M</sub></i>(<b>D</b>) ≤ 2<i>n</i> + 1 when the functions commute.</p> <p>If <i>X</i> is a set, <i>E</i> is an equivalence relation on <i>X</i>, and <i>n</i> ∈ <i>ω</i>, then define [<i>X</i>]<sup><i>n</i></sup><sub><i>E</i></sub> = {(<i>x</i><sub>0</sub>, ..., <i>x</i><sub><i>n</i> - 1</sub>) ∈ <sup><i>n</i></sup><i>X</i>: (∀<i>i</i>,<i>j</i>)(<i>i</i> ≠ <i>j</i> → ¬(<i>x<sub>i</sub></i> <i>E</i> <i>x<sub>j</sub></i>))}. For <i>n</i> ∈ <i>ω</i>, a set <i>X</i> has the <i>n</i>-Jónsson property if and only if for every function <i>f</i>: [<i>X</i>]<sup><i>n</i></sup><sub>=</sub> → <i>X</i>, there exists some <i>Y</i> ⊆ <i>X</i> with <i>X</i> and <i>Y</i> in bijection so that <i>f</i>[[<i>Y</i>]<sup><i>n</i></sup><sub>=</sub>] ≠ <i>X</i>. A set <i>X</i> has the Jónsson property if and only for every function <i>f</i> : (⋃<sub><i>n</i> ∈ <i>ω</i></sub> [<i>X</i>]<sup><i>n</i></sup><sub>=</sub>) → <i>X</i>, there exists some <i>Y</i> ⊆ <i>X</i> with <i>X</i> and <i>Y</i> in bijection so that <i>f</i>[⋃<sub><i>n</i> ∈ <i>ω</i></sub> [<i>Y</i>]<sup><i>n</i></sup><sub>=</sub>] ≠ <i>X</i>. Let <i>n</i> ∈ <i>ω</i>, <i>X</i> be a Polish space, and <i>E</i> be an equivalence relation on <i>X</i>. <i>E</i> has the <i>n</i>-Mycielski property if and only if for all comeager <i>C</i> ⊆ <sup><i>n</i></sup><i>X</i>, there is some Borel <i>A</i> ⊆ <i>X</i> so that <i>E</i> ≤<sub><i>B</i></sub> <i>E</i> ↾ <i>A</i> and [<i>A</i>]<sup><i>n</i></sup><sub><i>E</i></sub> ⊆ <i>C</i>. The following equivalence relations will be considered: <i>E</i><sub>0</sub> is defined on <sup><i>ω</i></sup>2 by <i>x</i> <i>E</i><sub>0</sub> <i>y</i> if and only if (∃<i>n</i>)(∀<i>k</i> &gt; <i>n</i>)(<i>x</i>(<i>k</i>) = <i>y</i>(<i>k</i>)). <i>E</i><sub>1</sub> is defined on <sup><i>ω</i></sup>(<sup><i>ω</i></sup>2) by <i>x</i> <i>E</i><sub>1</sub> <i>y</i> if and only if (∃<i>n</i>)(∀<i>k</i> &gt; <i>n</i>)(<i>x</i>(<i>k</i>) = <i>y</i>(<i>k</i>)). <i>E</i><sub>2</sub> is defined on <sup><i>ω</i></sup>2 by <i>x</i> <i>E</i><sub>2</sub> <i>y</i> if and only if ∑{<sup>1</sup>⁄<sub>(<i>n</i> + 1)</sub>: <i>x</i>(<i>n</i>) ≠ <i>y</i>(<i>n</i>)} &lt; ∞. <i>E</i><sub>3</sub> is defined on <sup><i>ω</i></sup>(<sup><i>ω</i></sup>2) by <i>x</i> <i>E</i><sub>3</sub> <i>y</i> if and only if (∀<i>n</i>)(<i>x</i>(<i>n</i>) <i>E</i><sub>0</sub> <i>y</i>(<i>n</i>)). Holshouser and Jackson have shown that ℝ is Jónsson under AD. The present research will show that <i>E</i><sub>0</sub> does not have the 3-Mycielski property and that <i>E</i><sub>1</sub>, <i>E</i><sub>2</sub>, and <i>E</i><sub>3</sub> do not have the 2-Mycielski property. Under ZF + AD, <sup><i>ω</i></sup>2/<i>E</i><sub>0</sub> does not have the 3-Jónsson property.</p> <p>Let <b>G</b> = (<i>X</i>, <i>G</i>) be a graph and define for <i>b</i> ≥ 1 its <i>b</i>-fold chromatic number <i>χ</i><sup>(<i>b</i>)</sup>(<b>G</b>) as the minimum size of <i>Y</i> such that there is a function <i>c</i> from <i>X</i> into <i>b</i>-sets of <i>Y</i> with <i>c</i>(<i>x</i>) ∩ <i>c</i>(<i>y</i>) = ∅ if <i>x</i> <i>G</i> <i>y</i>. Then its fractional chromatic number is <i>χ</i><sup><i>f</i></sup>(<b>G</b>) = inf<sub><i>b</i></sub> <sup><i>χ</i><sup>(<i>b</i>)</sup>(<b>G</b>)</sup>⁄<sub><i>b</i></sub> if the quotients are finite. If <i>X</i> is Polish and <b>G</b> is a Borel graph, we can also define its fractional Borel chromatic number <i>χ</i><sup><i>f</i></sup><sub><i>B</i></sub>(<b>G</b>) by restricting to only Borel functions. We similarly define this for Baire measurable and <i>μ</i>-measurable functions for a Borel measure <i>μ</i>. We show that for each countable graph <b>G</b>, one may construct an acyclic Borel graph <b>G</b>' on a Polish space such that <i>χ</i><sup><i>f</i></sup><sub><i>BM</i></sub>(<b>G</b>') = <i>χ</i><sup><i>f</i></sup>(<b>G</b>) and <i>χ</i><sub><i>BM</i></sub>(<b>G</b>') = <i>χ</i>(<b>G</b>), and similarly for <i>χ</i><sup><i>f</i></sup><sub><i>μ</i></sub> and <i>χ</i><sub><i>μ</i></sub>. We also prove that the implication <i>χ</i><sup><i>f</i></sup>(<b>G</b>) = 2 ⇒ <i>χ</i>(<b>G</b>) = 2 is false in the Borel setting.</p> 2018 Thesis NonPeerReviewed application/pdf https://thesis.library.caltech.edu/11006/1/meehan_connor_2018.pdf https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760 Meehan, Connor George Walmsley (2018) Definable Combinatorics of Graphs and Equivalence Relations. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/45E4-MC27. https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760 <https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760> https://thesis.library.caltech.edu/11006/