Properties of piezoresistive silicon nano-scale cantilevers with applications to BioNEMS

Over the last decade a great deal of interest has been raised in applications of Microelectromechanical Sensors [MEMS] for the detection of biological molecules and to the study of their forces of interaction. Experiments in these areas have included Force Spectroscopy (Chemical Force Microscopy),...

Full description

Bibliographic Details
Main Author: Arlett, Jessica Lynn
Format: Others
Published: 2006
Online Access:https://thesis.library.caltech.edu/1060/1/Jessica-Arlett-thesis-finalversion-Mar2206.pdf
Arlett, Jessica Lynn (2006) Properties of piezoresistive silicon nano-scale cantilevers with applications to BioNEMS. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/1CRV-VC02. https://resolver.caltech.edu/CaltechETD:etd-03222006-125635 <https://resolver.caltech.edu/CaltechETD:etd-03222006-125635>
Description
Summary:Over the last decade a great deal of interest has been raised in applications of Microelectromechanical Sensors [MEMS] for the detection of biological molecules and to the study of their forces of interaction. Experiments in these areas have included Force Spectroscopy (Chemical Force Microscopy), MEMS patch clamp technology, and surface stress sensors. All of these technologies suffer from limitations on temporal response and involve devices with active surface areas that are large compared to molecular dimensions. Biofunctionalized nanoelectromechanical systems (BioNEMS) have the potential to overcome both of these hurdles, offering important new prospects for single-molecule force assays that are amenable to large scale integration. Results are presented here on the characterization of piezoresistive silicon cantilevers with applications to BioNEMS devices. The cantilevers were characterized by studying their response in gaseous ambients under a number of drive conditions including magnetic, piezoelectric, and thermal actuation, in addition to passive detection of the thermomechanical response. The measurements were performed at liquid helium temperature, at room temperature, and over a range of pressures (atmospheric pressure to 30mT). Theoretical studies have been performed on the response of these devices to Brownian fluctuations in fluid, on the feasibility of these devices as surface stress sensors, and on improvements in device design as compared to piezoresistive surface stress sensors currently discussed in the literature. The devices were encapsulated in microfluidics and measurements were performed to show the noise floor in fluid. The piezoresistive response of the device in fluid was shown through the use of pulsatory fluidic drive. As a proof of concept, biodetection experiments are presented for biotin labeled beads. The biofunctionalization for the latter experiment was performed entirely within the microfluidics. A discussion of how these experiments can be extended to other cells, spores, and molecules is presented.