Aspects of Definability for Equivalence Relations
<p>This thesis will show that in the constructible universe L and set forcing extensions of L, there are no almost Borel reductions of the well-ordering equivalence relation into the admissibility equivalence relation and no Borel reductions of the isomorphism relation of any counterexample to...
Summary: | <p>This thesis will show that in the constructible universe L and set forcing extensions of L, there are no almost Borel reductions of the well-ordering equivalence relation into the admissibility equivalence relation and no Borel reductions of the isomorphism relation of any counterexample to Vaught's conjecture into the admissibility equivalence relation.</p>
<p>Let E be an analytic equivalence relation on a Polish space X with all classes Borel. Let I be a sigma-ideal on X such that its associated forcing of I-positive Borel subsets is a proper forcing. Assuming sharps of appropriate sets exist, it will be shown that there is an I-positive Borel subset of X on which the restriction of E is a Borel equivalence relation.</p>
<p>Assuming there are infinitely many Woodin cardinals below a measurable cardinal, then for any equivalence relation E in L(R) with all Borel classes and sigma-ideal I whose associated forcing is proper, there is an I-positive Borel set on which the restriction of E is Borel.</p> |
---|