AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY

A hot-flow axisymmetric Air Augmented Rocket (AAR) test apparatus was constructed to test various mixing duct configurations at static conditions. Primary flow for the AAR was provided through a liquid methanol-gaseous oxygen bipropellant rocket. Experimental thrust measurements were recorded and pr...

Full description

Bibliographic Details
Main Author: Johnson, Kyle Jacob
Format: Others
Published: DigitalCommons@CalPoly 2013
Subjects:
Online Access:https://digitalcommons.calpoly.edu/theses/930
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1984&context=theses
id ndltd-CALPOLY-oai-digitalcommons.calpoly.edu-theses-1984
record_format oai_dc
spelling ndltd-CALPOLY-oai-digitalcommons.calpoly.edu-theses-19842019-10-24T15:14:12Z AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY Johnson, Kyle Jacob A hot-flow axisymmetric Air Augmented Rocket (AAR) test apparatus was constructed to test various mixing duct configurations at static conditions. Primary flow for the AAR was provided through a liquid methanol-gaseous oxygen bipropellant rocket. Experimental thrust measurements were recorded and propellant mass flow rates and chamber conditions were calculated using an iterative solver dependant on recorded propellant line stagnation pressures. Primary rocket flow produced thrust ranging from 14 to 17.9lbf. Primary mass flow rate through testing ranged from 0.071 to 0.085lbm/s with calculated chamber pressures between 298-362psia. Calculated primary flow velocity ranged from 6,600ft/s to 8,000ft/s depending on propellant pressure inputs and calculated chamber conditions. The AAR test apparatus was capable of testing various mixing duct geometries and measuring the axial thrust of the mixing ducts separately from the total thrust of the system. Two mixing duct geometries, a straight wall mixing duct and diverging wall mixing duct, with identical exterior dimensions and inlet geometry were tested for a range of air/fuel mixture ratios from 0.82 to 2.2 spanning the stoichometric mixture ratio of 1.5. Mixing duct thrust did not vary greatly with primary flow characteristics. Straight mixing duct thrust averaged 0.97lbf and diverging mixing duct thrust averaged 0.18lbf. Total system thrust decreased by an average of 0.62lbf with a straight mixing duct and 0.74lbf with a diverging mixing duct. Decreases in total thrust are attributed to low pressure flow interaction between the mixing duct and the primary rocket assembly. Visual flow comparison between mixing duct configurations and fuel ratio cases were carried out using high definition video recording with a grid reference for comparison. The diverging mixing duct produced the greatest variation in visible flow when compared to a straight mixing duct and no mixing duct configuration. This indicated that the diverging mixing duct had a greater influence on primary and secondary flow field mixing than the straight mixing duct. 2013-03-01T08:00:00Z text application/pdf https://digitalcommons.calpoly.edu/theses/930 https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1984&context=theses Master's Theses and Project Reports DigitalCommons@CalPoly Air Augmented Rocket Mixing Duct Thrust Variable Mixture Ratio Supersonic Ejector Mixer-Ejector Propulsion and Power
collection NDLTD
format Others
sources NDLTD
topic Air Augmented Rocket
Mixing Duct Thrust
Variable Mixture Ratio
Supersonic Ejector
Mixer-Ejector
Propulsion and Power
spellingShingle Air Augmented Rocket
Mixing Duct Thrust
Variable Mixture Ratio
Supersonic Ejector
Mixer-Ejector
Propulsion and Power
Johnson, Kyle Jacob
AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY
description A hot-flow axisymmetric Air Augmented Rocket (AAR) test apparatus was constructed to test various mixing duct configurations at static conditions. Primary flow for the AAR was provided through a liquid methanol-gaseous oxygen bipropellant rocket. Experimental thrust measurements were recorded and propellant mass flow rates and chamber conditions were calculated using an iterative solver dependant on recorded propellant line stagnation pressures. Primary rocket flow produced thrust ranging from 14 to 17.9lbf. Primary mass flow rate through testing ranged from 0.071 to 0.085lbm/s with calculated chamber pressures between 298-362psia. Calculated primary flow velocity ranged from 6,600ft/s to 8,000ft/s depending on propellant pressure inputs and calculated chamber conditions. The AAR test apparatus was capable of testing various mixing duct geometries and measuring the axial thrust of the mixing ducts separately from the total thrust of the system. Two mixing duct geometries, a straight wall mixing duct and diverging wall mixing duct, with identical exterior dimensions and inlet geometry were tested for a range of air/fuel mixture ratios from 0.82 to 2.2 spanning the stoichometric mixture ratio of 1.5. Mixing duct thrust did not vary greatly with primary flow characteristics. Straight mixing duct thrust averaged 0.97lbf and diverging mixing duct thrust averaged 0.18lbf. Total system thrust decreased by an average of 0.62lbf with a straight mixing duct and 0.74lbf with a diverging mixing duct. Decreases in total thrust are attributed to low pressure flow interaction between the mixing duct and the primary rocket assembly. Visual flow comparison between mixing duct configurations and fuel ratio cases were carried out using high definition video recording with a grid reference for comparison. The diverging mixing duct produced the greatest variation in visible flow when compared to a straight mixing duct and no mixing duct configuration. This indicated that the diverging mixing duct had a greater influence on primary and secondary flow field mixing than the straight mixing duct.
author Johnson, Kyle Jacob
author_facet Johnson, Kyle Jacob
author_sort Johnson, Kyle Jacob
title AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY
title_short AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY
title_full AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY
title_fullStr AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY
title_full_unstemmed AXISYMMETRIC AIR AUGMENTED METHANOL/GOX ROCKET MIXING DUCT EXPERIMENTAL THRUST STUDY
title_sort axisymmetric air augmented methanol/gox rocket mixing duct experimental thrust study
publisher DigitalCommons@CalPoly
publishDate 2013
url https://digitalcommons.calpoly.edu/theses/930
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1984&context=theses
work_keys_str_mv AT johnsonkylejacob axisymmetricairaugmentedmethanolgoxrocketmixingductexperimentalthruststudy
_version_ 1719277391583379456