Seawater/Wastewater Production of Microalgae-based Biofuels in Closed Loop Tubular Photobioreactors

The push for alternatives to petroleum fuels has forced researchers to look for highly productive, renewable, non-food resources. The advantages of using microalgae instead of traditional oil crops for biofuel production include high oil yields, rapid reproductive rates, and versatile growing requi...

Full description

Bibliographic Details
Main Author: Lowrey, Joshua Bradley
Format: Others
Published: DigitalCommons@CalPoly 2011
Subjects:
Online Access:https://digitalcommons.calpoly.edu/theses/509
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1538&context=theses
Description
Summary:The push for alternatives to petroleum fuels has forced researchers to look for highly productive, renewable, non-food resources. The advantages of using microalgae instead of traditional oil crops for biofuel production include high oil yields, rapid reproductive rates, and versatile growing requirements. In order to reduce the cost of producing microalgae based biofuels, wastewater has been used as a nutrient source instead of specialized plant nutrients. The purpose of this study was to compare the relative effectiveness of different combinations of microalgae strain and dairy wastewater for increasing biomass. The methods for monitoring growth included optical density, cell counting, biomass estimation by chlorophyll-a, and volatile suspended solids. The analyses compared four concentrations of wastewater media as well as four strain treatments: Chlorella vulgaris, Tetraselmis sp., mixed freshwater culture and mixed saltwater culture. Optimum wastewater concentrations for microalgae growth were approximately 0% and 25% for most strain treatments. The results of the wastewater treatments concluded that dairy wastewater could serve as an effective nutrient substitute for plant food at concentrations approximately 25%. Chlorella vulgaris and Tetraselmis sp. prevailed over the mixed cultures for biomass production. Nitrate was the most limiting nutrient and exhibited the greatest reductions, sometimes in excess of 90%. The regression equations derived from the volatile suspended solids data achieved high R2 values and determined that total nitrogen, ammonium, and nitrate were significant in the model. In those equations, increasing either ammonium or nitrate yielded an increase in volatile suspended solids. With regards to comparing biomass quantification methods, the two most useful and reliable biomass quantification methods were optical density and volatile suspended solids.