UV and cold temperature effects on messenger RNA integrity from human saliva

Messenger ribonucleic acid (mRNA) turns out to be an increasingly important molecule in forensic analysis of biological samples. Because of the specific role of mRNA in all living cells to transfer genetic information from DNA to proteins, mRNA is able to provide cell-specific information and regula...

Full description

Bibliographic Details
Main Author: Charkhezarrin, Samila
Other Authors: McKillip, John L.
Published: 2012
Subjects:
Online Access:http://cardinalscholar.bsu.edu/handle/123456789/195127
http://liblink.bsu.edu/uhtbin/catkey/1660850
Description
Summary:Messenger ribonucleic acid (mRNA) turns out to be an increasingly important molecule in forensic analysis of biological samples. Because of the specific role of mRNA in all living cells to transfer genetic information from DNA to proteins, mRNA is able to provide cell-specific information and regulate control of gene expression. mRNA analysis performed on an extracted mRNA sample isolated from a biological stain of a crime scene can be used to identify the nature of the tissue(s) comprising the stain. In this research, the effects of a couple of mRNA storage conditions such as cold temperature and ultraviolet light exposure on mRNA integrity from human saliva have been evaluated. Human saliva samples have been sampled and exposed to UV light and freezing temperature (-20°C) for varying lengths of time. Extracted mRNA from each sample has been quantified spectrophotometrically and subjected to real time RT-PCR to evaluate stability and integrity of one of the saliva marker transcripts, KRT13 mRNA, of treated samples compared to untreated samples. The results of this study indicated that UV light and freezing temperature don’t have a significant effect on the integrity of KRT13 mRNA. There is also no apparent correlation between Ct values of treated samples and treating intervals. This research holds important implications for the use of mRNA for applications in forensic science, an area which has not been researched extensively. === Department of Biology