Summary: | Databases form the common component of many software systems, including mission
critical transaction processing systems and multi-tier Internet applications. There is a
large body of research in the performance of database management system components,
while studies of overall database system performance have been limited. Moreover,
performance models specifically targeted at the database design have not been
extensively studied.
This thesis attempts to address this concern by proposing a performance evaluation
method for database designs based on queueing network models. The method is targeted
at designs of large databases in which I/O is the dominant cost factor. The database
design queueing network performance model is suitable in providing what if
comparisons of database designs before database system implementation.
A formal specification that captures the essential database design features while keeping
the performance model sufficiently simple is presented. Furthermore, the simplicity of
the modelling algorithms permits the direct mapping between database design entities
and queueing network models. This affords for a more applicable performance model
that provides relevant feedback to database designers and can be straightforwardly
integrated into early database design development phases. The accuracy of the
modelling technique is validated by modelling an open source implementation of the
TPC-C benchmark. The contribution of this thesis is considered to be significant in that the majority of
performance evaluation models for database systems target capacity planning or overall
system properties, with limited work in detailed database transaction processing and
behaviour. In addition, this work is deemed to be an improvement over previous
methodologies in that the transaction is modelled at a finer granularity, and that the
database design queueing network model provides for the explicit representation of
active database rules and referential integrity constraints. === Iqra Foundation
|