Summary: | La sumoylation représente, après l’ubiquitination, l’exemple le plus étudié de modification post-traductionnelle impliquant la liaison d’une protéine à une autre. Cependant, alors que l’ubiquitination est impliquée principalement dans la dégradation des protéines par le protéasome, la sumoylation semble réguler les propriétés biochimiques de ses substrats (localisation cellulaire, interaction protéique, activité, …). Pour venir lier une protéine appelée Sumo (Small Ubiquitin-like Modifier) sur un substrat, la sumoylation emprunte une voie enzymatique analogue à celle de l’ubiquitination mais utilise des enzymes différentes. A ce jour, bien que plusieurs centaines de substrats de la sumoylation aient été identifiés, seules 5 structures de protéines sumoylées ont été résolues. Elles ne sont vraisemblablement pas représentatives de l’ensemble des substrats de la sumoylation et mon travail de thèse vise à élargir les connaissances structurales sur la sumoylation pour permettre de dégager des concepts généraux.
Les études sur la sumoylation se heurtent généralement à la difficulté d’obtenir les substrats sumoylés. Ce projet a donc nécessité, au niveau technique, la mise au point d’un système de sumoylation in vivo en bactérie permettant de modifier des quantités importantes de protéines et de les purifier efficacement.
Des analyses bioinformatiques nous ont permis d’identifier des substrats de la sumoylation propices à une étude structurale de leur forme sumoylée. Au terme de ces analyses, nous avons retenu 3 protéines : DJ-1, PPARγ et IκBα. Bien que la complexité du sujet nous ait ensuite amené à écarter DJ-1 et PPARγ, nous sommes parvenus à purifier la forme sumoylée d’IκBα. Ce résultat nous a permis d’entreprendre une campagne de cristallogenèse d’IκBα complexé au facteur de transcription NF-κB. L’obtention d’IκBα sumoylé permettra également d’aborder des études fonctionnelles pour améliorer la compréhension du rôle de la sumoylation de ce substrat.
Nos analyses bioinformatiques ont également révélé que dans plus de 60% des cas, les sites de sumoylation des substrats se trouvent dans des zones prédites intrinsèquement désordonnées. L’importance du désordre dans le processus de sumoylation était jusqu’alors largement sous-estimée. A titre d’exemple, nous avons étudié par diffusion des rayons X aux petits angles la structure du domaine transactivateur du facteur de transcription ERM sous forme non modifiée et sous forme sumoylée. Cette étude indique que la sumoylation d’ERM n’induit pas le repliement de ce domaine transactivateur. De même, il apparait peu probable, au vu de la flexibilité de cette région, que la sumoylation empêche des interactions avec certains partenaires cellulaires. Dans ce contexte, la sumoylation semble servir de plateforme de recrutement de partenaires, reconnaissant de manière spécifique le Sumo. Ce mécanisme pourrait se généraliser à l’ensemble des sites de sumoylation prédits dans des zones intrinsèquement désordonnées.
Le système de sumoylation que nous avons développé permet de produire des protéines sumoylées pures en grande quantité et pourra également servir à identifier des protéines reconnaissant spécifiquement les substrats modifiés. Tous ces éléments devraient permettre de progresser dans la compréhension de cette modification post-traductionnelle impliquée dans de nombreux processus cellulaires fondamentaux.
|