Méthode des réseaux de Lagrange en mécanique quantique

<p align="justify">Les fonctions de Lagrange sont des fonctions indéfiniment dérivables qui s'annulent en tous les points d'un réseau sauf un. Ces fonctions sont utilisées comme fonctions de base d'un calcul variationnel. Les éléments de matrice de ce calcul sont évalu...

Full description

Bibliographic Details
Main Author: Hesse, Michel
Other Authors: Baye, Daniel
Format: Others
Language:fr
Published: Universite Libre de Bruxelles 2001
Subjects:
Online Access:http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-08122005-151101/
id ndltd-BICfB-oai-ulb.ac.be-ETDULB-ULBetd-08122005-151101
record_format oai_dc
collection NDLTD
language fr
format Others
sources NDLTD
topic Méthode numérique
Méthode sur réseau
Physique atomique et nucléaire
Mécanique quantique
spellingShingle Méthode numérique
Méthode sur réseau
Physique atomique et nucléaire
Mécanique quantique
Hesse, Michel
Méthode des réseaux de Lagrange en mécanique quantique
description <p align="justify">Les fonctions de Lagrange sont des fonctions indéfiniment dérivables qui s'annulent en tous les points d'un réseau sauf un. Ces fonctions sont utilisées comme fonctions de base d'un calcul variationnel. Les éléments de matrice de ce calcul sont évalués à l'aide de la règle de quadrature de Gauss définie par le réseau de points. Les équations à résoudre prennent ainsi la forme d'équations sur réseau.</p> <p align="justify">La méthode des réseaux de Lagrange allie simplicité et précision. La matrice représentant le potentiel est diagonale et ne dépend que des valeurs prises par le potentiel aux points du réseau. Contrairement à la méthode des différences finies, une expression analytique est obtenue pour la solution. Nous cherchons clans cette thèse à cerner les avantages et inconvénients de la méthode des réseaux de Lagrange, ainsi qu'à étendre son champ d'application en mécanique quantique. Nous montrons notamment que cette méthode peut être reliée à d'autres méthodes sur réseau, telles que les méthodes de la variable discrétisée (DVR) ou du réseau de Fourier, qui sont fort utilisées en physique atomique et moléculaire.</p> <p align="justify">Dans les problèmes à deux corps, nous appliquons la méthode à l'étude des états liés et nous l'étendons au cas des collisions, c'est-à-dire aux états libres. Une nouvelle technique de calcul de la longueur de diffusion et de la portée effective est également considérée. Dans certains cas, la solution exacte du problème à deux corps existe sous forme analytique, ce qui permet une étude de la précision de la méthode en ce qui concerne les valeurs propres et les vecteurs propres de la matrice hamiltonienne. L'extension de la méthode aux problèmes à deux corps régis par une dynamique semi-relativiste est également examinée.</p> <p align="justify">Dans le cas des problèmes à trois corps, nous effectuons une comparaison entre plusieurs systèmes de coordonnées auxquels sont couplés différents réseaux de Lagrange. Les résultats de cette comparaison dépendent de la présence de singularités dans les potentiels, celles-ci pouvant limiter fortement la précision de la méthode.</p> <p align="justify">En physique nucléaire, nous comparons deux approches sur réseaux de Lagrange lors de l'étude de l'état fondamental du noyau 6He. Il s'agit d'un noyau à halo de neutrons, pour lequel il existe une forte probabilité de trouver deux des neutrons loin des autres nucléons. Le noyau 6He peut ainsi être traité comme un système à trois corps, constitué d'une particule alpha et de deux neutrons. Nous étendons également le modèle à trois corps pour ce noyau au cas d'interactions à deux corps plus générales, c'est-à-dire contenant différents opérateurs agissant sur les spins des nucléons.</p> <p align="justify">En physique atomique et moléculaire, où les interactions sont, en première approximation, purement coulombiennes, nous nous sommes intéressé aux états S et P des principaux systèmes à trois corps que sont l'atome d'hélium He, les ions hydrogène H-et positronium Ps-, l'ion moléculaire d'hydrogène HZ et la molécule muonique dt"mu". Les fonctions d'onde approchées obtenues lors de la détermination des états liés sont utilisées pour évaluer des rayons quadratiques moyens et les rayons de masse de ces systèmes.</p>
author2 Baye, Daniel
author_facet Baye, Daniel
Hesse, Michel
author Hesse, Michel
author_sort Hesse, Michel
title Méthode des réseaux de Lagrange en mécanique quantique
title_short Méthode des réseaux de Lagrange en mécanique quantique
title_full Méthode des réseaux de Lagrange en mécanique quantique
title_fullStr Méthode des réseaux de Lagrange en mécanique quantique
title_full_unstemmed Méthode des réseaux de Lagrange en mécanique quantique
title_sort méthode des réseaux de lagrange en mécanique quantique
publisher Universite Libre de Bruxelles
publishDate 2001
url http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-08122005-151101/
work_keys_str_mv AT hessemichel methodedesreseauxdelagrangeenmecaniquequantique
_version_ 1716393998315159552
spelling ndltd-BICfB-oai-ulb.ac.be-ETDULB-ULBetd-08122005-1511012013-01-07T15:42:32Z Méthode des réseaux de Lagrange en mécanique quantique Hesse, Michel Méthode numérique Méthode sur réseau Physique atomique et nucléaire Mécanique quantique <p align="justify">Les fonctions de Lagrange sont des fonctions indéfiniment dérivables qui s'annulent en tous les points d'un réseau sauf un. Ces fonctions sont utilisées comme fonctions de base d'un calcul variationnel. Les éléments de matrice de ce calcul sont évalués à l'aide de la règle de quadrature de Gauss définie par le réseau de points. Les équations à résoudre prennent ainsi la forme d'équations sur réseau.</p> <p align="justify">La méthode des réseaux de Lagrange allie simplicité et précision. La matrice représentant le potentiel est diagonale et ne dépend que des valeurs prises par le potentiel aux points du réseau. Contrairement à la méthode des différences finies, une expression analytique est obtenue pour la solution. Nous cherchons clans cette thèse à cerner les avantages et inconvénients de la méthode des réseaux de Lagrange, ainsi qu'à étendre son champ d'application en mécanique quantique. Nous montrons notamment que cette méthode peut être reliée à d'autres méthodes sur réseau, telles que les méthodes de la variable discrétisée (DVR) ou du réseau de Fourier, qui sont fort utilisées en physique atomique et moléculaire.</p> <p align="justify">Dans les problèmes à deux corps, nous appliquons la méthode à l'étude des états liés et nous l'étendons au cas des collisions, c'est-à-dire aux états libres. Une nouvelle technique de calcul de la longueur de diffusion et de la portée effective est également considérée. Dans certains cas, la solution exacte du problème à deux corps existe sous forme analytique, ce qui permet une étude de la précision de la méthode en ce qui concerne les valeurs propres et les vecteurs propres de la matrice hamiltonienne. L'extension de la méthode aux problèmes à deux corps régis par une dynamique semi-relativiste est également examinée.</p> <p align="justify">Dans le cas des problèmes à trois corps, nous effectuons une comparaison entre plusieurs systèmes de coordonnées auxquels sont couplés différents réseaux de Lagrange. Les résultats de cette comparaison dépendent de la présence de singularités dans les potentiels, celles-ci pouvant limiter fortement la précision de la méthode.</p> <p align="justify">En physique nucléaire, nous comparons deux approches sur réseaux de Lagrange lors de l'étude de l'état fondamental du noyau 6He. Il s'agit d'un noyau à halo de neutrons, pour lequel il existe une forte probabilité de trouver deux des neutrons loin des autres nucléons. Le noyau 6He peut ainsi être traité comme un système à trois corps, constitué d'une particule alpha et de deux neutrons. Nous étendons également le modèle à trois corps pour ce noyau au cas d'interactions à deux corps plus générales, c'est-à-dire contenant différents opérateurs agissant sur les spins des nucléons.</p> <p align="justify">En physique atomique et moléculaire, où les interactions sont, en première approximation, purement coulombiennes, nous nous sommes intéressé aux états S et P des principaux systèmes à trois corps que sont l'atome d'hélium He, les ions hydrogène H-et positronium Ps-, l'ion moléculaire d'hydrogène HZ et la molécule muonique dt"mu". Les fonctions d'onde approchées obtenues lors de la détermination des états liés sont utilisées pour évaluer des rayons quadratiques moyens et les rayons de masse de ces systèmes.</p> Baye, Daniel Universite Libre de Bruxelles 2001-10-31 text application/pdf http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-08122005-151101/ http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-08122005-151101/ fr restricted J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.