Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures

Résumé Les systèmes microbiologiques naturels (colonne d’eau), semi-naturels (station d’épuration), mais surtout industriels ou de laboratoire (bioréacteurs) sont communément représentés par des modèles mathématiques destinés à l’étude, à la compréhension des phénomènes ou au contrôle des processus...

Full description

Bibliographic Details
Main Author: Thierie, Jacques GE
Other Authors: AGATHOS, Spiros
Format: Others
Language:fr
Published: Universite Libre de Bruxelles 2005
Subjects:
Online Access:http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04162005-120346/
id ndltd-BICfB-oai-ulb.ac.be-ETDULB-ULBetd-04162005-120346
record_format oai_dc
collection NDLTD
language fr
format Others
sources NDLTD
topic signaux cellulaires/cellular signalling
ingéniérie métabolique/metabolic engineering
SPD/PDS
dissipation d'énergie/energy spilling
maintenance
flux métaboliques/metabolic fluxes
flocs bactériens/bacterial flocs
Saccharomyces cerevisiae
spellingShingle signaux cellulaires/cellular signalling
ingéniérie métabolique/metabolic engineering
SPD/PDS
dissipation d'énergie/energy spilling
maintenance
flux métaboliques/metabolic fluxes
flocs bactériens/bacterial flocs
Saccharomyces cerevisiae
Thierie, Jacques GE
Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures
description Résumé Les systèmes microbiologiques naturels (colonne d’eau), semi-naturels (station d’épuration), mais surtout industriels ou de laboratoire (bioréacteurs) sont communément représentés par des modèles mathématiques destinés à l’étude, à la compréhension des phénomènes ou au contrôle des processus (de production, par exemple). Dans l’énorme majorité des cas, lorsque les cellules (procaryotes ou eucaryotes) mises en jeu dans ces systèmes sont en suspension, le formalisme de ces modèles non structurés traite le système comme s’il était homogène. Or, en toute rigueur, il est clair que cette approche n’est qu’une approximation et que nous avons à faire à des phénomènes hétérogènes, formés de plusieurs phases (solide, liquide, gazeuse) intimement mélangées. Nous désignons ces systèmes comme « polyphasiques dispersés » (SPD). Ce sont des systèmes thermodynami-quement instables, (presque) toujours ouverts. La démarche que nous avons entreprise consiste à examiner si le fait de considérer des systèmes dits « homogènes » comme des systèmes hétérogènes (ce qu’ils sont en réalité) apporte, malgré une complication du traitement mathématique, un complément d’information significatif et pertinent. La démarche s’est faite en deux temps : · Une étape purement théorique, destinée à établir de manière rigoureuse et générale les bilans de matière pour chaque composé du système dans chacune de ces phases. · Une étape appliquée, visant à démontrer, au travers d’exemples concrets, la validité du concept et de la démarche. Pour l’étude des applications, pour diverses raisons, nous avons choisi d’étudier un bioréacteur ouvert « simple », le chémostat. Les bilans généraux dérivés à la première étape ont donc été appliqués à ce réacteur et plusieurs exemples, tirés de la littérature, pour la plupart, ont été traités dans le cadre des SPD. Les principaux résultats exposés dans le travail concernent : - sur le plan général, la pertinence d’une partition des systèmes en plusieurs phases, ce qui fait apparaître à la fois des flux d’échange interphasiques (qui n’apparaissent pas dans les systèmes dits monophasiques) et la possibilité de représenter le système à plusieurs niveaux de description. - quant aux applications, outre quelques petits exemples simples, nous proposons 1) un nouveau mécanisme pour représenter la dissipation de l’énergie cellulaire (un domaine encore très controversé), grâce à une approche implicite (c’est-à-dire, sans hypothèses particulières sur la forme des cinétiques intracellulaires) et 2) un modèle simple, original et innovant pour expliquer les signaux chimiques intercellulaires, les phénomènes de seuil et le branchement métabolique respiro-fermentatif en général et chez Saccharomyces cerevisiae en particulier, un mécanisme d’intérêt fondamental et industriel (levuristes et fermentations alcooliques). Abstract. Natural microbiological systems (rivers, seas, …), semi-natural (wastewater treatment plants), but especially industrial or lab-scale systems (bioreactors) are commonly represented by mathematical models intended for the study, the understanding of phenomena or for the control of processes (production, for example). In almost in every case, when the cells (prokaryotic or eukaryotic) concerned in these systems are in suspension, the formalism of these unstructured models treats the system as if it were homogeneous. However, in any rigor, this approach is clearly only an approximation and we have to deal with heterogeneous phenomena, formed of several phases (solid, liquid, gas) closely mixed. We refer to these systems as “polyphasic dispersed systems” (PDS). They are thermodynamically unstable systems, and are (practically) always open. The approach we undertook consists in examining if treating apparent «homogeneous» systems as heterogeneous systems (what they actually are) brings, in spite of some mathematical complications, further significant and relevant information’s. We proceeded in two steps: · A purely theoretical stage, intended to establish in a rigorous and general way the mass balances for each compound in each phases of the system. · A applied stage, aiming at showing, through concrete examples, the soundness of the concept and of the method. Concerning the applications, for several reasons, we chose to study a “simple” open bioreactor: the chemostat. The general balances previously derived in a general way were hence applied to this reactor and a number of examples, mainly obtained from the literature, were treated within the PDS framework. The principal results presented in this work concern: - on the general level, the importance of partitioning the system in different phases, enlightening at the same time interphasic exchange flows (which do not appear in the systems known as monophasic) and the possibility of representing the system on several levels of description. - concerning the applications, in addition to some small simple examples, we propose 1) a new mechanism representing the cellular energy dissipation (a still very controversial field), using an implicit approach (i.e., without particular assumptions about the form of the intracellular kinetics) and 2) a simple, original and inventive model explaining cellular chemical signaling, threshold phenomena and a general metabolic switch occurring during respirofermentative transition. The latter was especially tested on Saccharomyces cerevisiae data to interpret the Crabtree effect in yeast, a mechanism of fundamental and industrial importance (in connection with baker’s yeast production and alcoholic fermentations).
author2 AGATHOS, Spiros
author_facet AGATHOS, Spiros
Thierie, Jacques GE
author Thierie, Jacques GE
author_sort Thierie, Jacques GE
title Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures
title_short Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures
title_full Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures
title_fullStr Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures
title_full_unstemmed Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures
title_sort théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/theory and applications of polyphasic dispersed systems to chemostat cellular cultures
publisher Universite Libre de Bruxelles
publishDate 2005
url http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04162005-120346/
work_keys_str_mv AT thieriejacquesge theorieetapplicationsdessystemespolyphasiquesdispersesauxculturescellulairesenchemostattheoryandapplicationsofpolyphasicdispersedsystemstochemostatcellularcultures
_version_ 1716393939695566848
spelling ndltd-BICfB-oai-ulb.ac.be-ETDULB-ULBetd-04162005-1203462013-01-07T15:42:32Z Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures Thierie, Jacques GE signaux cellulaires/cellular signalling ingéniérie métabolique/metabolic engineering SPD/PDS dissipation d'énergie/energy spilling maintenance flux métaboliques/metabolic fluxes flocs bactériens/bacterial flocs Saccharomyces cerevisiae Résumé Les systèmes microbiologiques naturels (colonne d’eau), semi-naturels (station d’épuration), mais surtout industriels ou de laboratoire (bioréacteurs) sont communément représentés par des modèles mathématiques destinés à l’étude, à la compréhension des phénomènes ou au contrôle des processus (de production, par exemple). Dans l’énorme majorité des cas, lorsque les cellules (procaryotes ou eucaryotes) mises en jeu dans ces systèmes sont en suspension, le formalisme de ces modèles non structurés traite le système comme s’il était homogène. Or, en toute rigueur, il est clair que cette approche n’est qu’une approximation et que nous avons à faire à des phénomènes hétérogènes, formés de plusieurs phases (solide, liquide, gazeuse) intimement mélangées. Nous désignons ces systèmes comme « polyphasiques dispersés » (SPD). Ce sont des systèmes thermodynami-quement instables, (presque) toujours ouverts. La démarche que nous avons entreprise consiste à examiner si le fait de considérer des systèmes dits « homogènes » comme des systèmes hétérogènes (ce qu’ils sont en réalité) apporte, malgré une complication du traitement mathématique, un complément d’information significatif et pertinent. La démarche s’est faite en deux temps : · Une étape purement théorique, destinée à établir de manière rigoureuse et générale les bilans de matière pour chaque composé du système dans chacune de ces phases. · Une étape appliquée, visant à démontrer, au travers d’exemples concrets, la validité du concept et de la démarche. Pour l’étude des applications, pour diverses raisons, nous avons choisi d’étudier un bioréacteur ouvert « simple », le chémostat. Les bilans généraux dérivés à la première étape ont donc été appliqués à ce réacteur et plusieurs exemples, tirés de la littérature, pour la plupart, ont été traités dans le cadre des SPD. Les principaux résultats exposés dans le travail concernent : - sur le plan général, la pertinence d’une partition des systèmes en plusieurs phases, ce qui fait apparaître à la fois des flux d’échange interphasiques (qui n’apparaissent pas dans les systèmes dits monophasiques) et la possibilité de représenter le système à plusieurs niveaux de description. - quant aux applications, outre quelques petits exemples simples, nous proposons 1) un nouveau mécanisme pour représenter la dissipation de l’énergie cellulaire (un domaine encore très controversé), grâce à une approche implicite (c’est-à-dire, sans hypothèses particulières sur la forme des cinétiques intracellulaires) et 2) un modèle simple, original et innovant pour expliquer les signaux chimiques intercellulaires, les phénomènes de seuil et le branchement métabolique respiro-fermentatif en général et chez Saccharomyces cerevisiae en particulier, un mécanisme d’intérêt fondamental et industriel (levuristes et fermentations alcooliques). Abstract. Natural microbiological systems (rivers, seas, …), semi-natural (wastewater treatment plants), but especially industrial or lab-scale systems (bioreactors) are commonly represented by mathematical models intended for the study, the understanding of phenomena or for the control of processes (production, for example). In almost in every case, when the cells (prokaryotic or eukaryotic) concerned in these systems are in suspension, the formalism of these unstructured models treats the system as if it were homogeneous. However, in any rigor, this approach is clearly only an approximation and we have to deal with heterogeneous phenomena, formed of several phases (solid, liquid, gas) closely mixed. We refer to these systems as “polyphasic dispersed systems” (PDS). They are thermodynamically unstable systems, and are (practically) always open. The approach we undertook consists in examining if treating apparent «homogeneous» systems as heterogeneous systems (what they actually are) brings, in spite of some mathematical complications, further significant and relevant information’s. We proceeded in two steps: · A purely theoretical stage, intended to establish in a rigorous and general way the mass balances for each compound in each phases of the system. · A applied stage, aiming at showing, through concrete examples, the soundness of the concept and of the method. Concerning the applications, for several reasons, we chose to study a “simple” open bioreactor: the chemostat. The general balances previously derived in a general way were hence applied to this reactor and a number of examples, mainly obtained from the literature, were treated within the PDS framework. The principal results presented in this work concern: - on the general level, the importance of partitioning the system in different phases, enlightening at the same time interphasic exchange flows (which do not appear in the systems known as monophasic) and the possibility of representing the system on several levels of description. - concerning the applications, in addition to some small simple examples, we propose 1) a new mechanism representing the cellular energy dissipation (a still very controversial field), using an implicit approach (i.e., without particular assumptions about the form of the intracellular kinetics) and 2) a simple, original and inventive model explaining cellular chemical signaling, threshold phenomena and a general metabolic switch occurring during respirofermentative transition. The latter was especially tested on Saccharomyces cerevisiae data to interpret the Crabtree effect in yeast, a mechanism of fundamental and industrial importance (in connection with baker’s yeast production and alcoholic fermentations). AGATHOS, Spiros SIMON, Jean-Paul STALON, Victor PENNINCKX, Michel HUEZ, Georges DROOGMANS, Louis HALLOIN, Véronique Universite Libre de Bruxelles 2005-09-05 text application/pdf http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04162005-120346/ http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04162005-120346/ fr unrestricted J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.