Nonparametric analysis for risk management and market microstructure

This research develops and applies nonparametric estimation tools in two sectors of interest of financial econometrics: risk management and market microstructure. In the first part we address the problem of estimating conditional quantiles in financial and economic time series. Research in this fiel...

Full description

Bibliographic Details
Main Author: Cosma, Antonio
Format: Others
Language:en
Published: Universite catholique de Louvain 2004
Subjects:
Online Access:http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-12132004-153308/
id ndltd-BICfB-oai-ucl.ac.be-ETDUCL-BelnUcetd-12132004-153308
record_format oai_dc
spelling ndltd-BICfB-oai-ucl.ac.be-ETDUCL-BelnUcetd-12132004-1533082013-01-07T15:41:25Z Nonparametric analysis for risk management and market microstructure Cosma, Antonio Conditional quantiles Financial durations Shape preserving estimation Non orthogonal wavelets Nonparametric statistics Time series This research develops and applies nonparametric estimation tools in two sectors of interest of financial econometrics: risk management and market microstructure. In the first part we address the problem of estimating conditional quantiles in financial and economic time series. Research in this field received great impulse since quantile based risk measures such as Value at Risk (VaR) have become essential tools to assess the riskiness of trading activities. The great amounts of data available in financial time series allows building nonparametric estimators that are not subject to the risk of specification error of parametric models. A wavelet based estimator is developed. With this approach, minimum regularity conditions of the underlying process are required. Moreover the specific choice of the wavelets in this work leads to the constructions of shape preserving estimators of probability functions. In other words, estimates of probability functions, both densities and cumulative distribution functions, are probability functions themselves. This method is compared with competing methods through simulations and applications to real data. In the second part we carry out a nonparametric analysis of financial durations, that is of the waiting times between particular financial events, such as trades, quote updates, volume accumulation, that happen in financial markets. These data display very peculiar stylized facts one has to take into account when attempting to model them. We make use of an existing algorithm to describe nonparametrically the dynamics of the process in terms of its lagged realizations and of a latent variable, its conditional mean. The estimation devices needed to effectively apply the algorithm to our dataset are presented in this part of the work. Universite catholique de Louvain 2004-12-20 text application/pdf http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-12132004-153308/ http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-12132004-153308/ en unrestricted J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.
collection NDLTD
language en
format Others
sources NDLTD
topic Conditional quantiles
Financial durations
Shape preserving estimation
Non orthogonal wavelets
Nonparametric statistics
Time series
spellingShingle Conditional quantiles
Financial durations
Shape preserving estimation
Non orthogonal wavelets
Nonparametric statistics
Time series
Cosma, Antonio
Nonparametric analysis for risk management and market microstructure
description This research develops and applies nonparametric estimation tools in two sectors of interest of financial econometrics: risk management and market microstructure. In the first part we address the problem of estimating conditional quantiles in financial and economic time series. Research in this field received great impulse since quantile based risk measures such as Value at Risk (VaR) have become essential tools to assess the riskiness of trading activities. The great amounts of data available in financial time series allows building nonparametric estimators that are not subject to the risk of specification error of parametric models. A wavelet based estimator is developed. With this approach, minimum regularity conditions of the underlying process are required. Moreover the specific choice of the wavelets in this work leads to the constructions of shape preserving estimators of probability functions. In other words, estimates of probability functions, both densities and cumulative distribution functions, are probability functions themselves. This method is compared with competing methods through simulations and applications to real data. In the second part we carry out a nonparametric analysis of financial durations, that is of the waiting times between particular financial events, such as trades, quote updates, volume accumulation, that happen in financial markets. These data display very peculiar stylized facts one has to take into account when attempting to model them. We make use of an existing algorithm to describe nonparametrically the dynamics of the process in terms of its lagged realizations and of a latent variable, its conditional mean. The estimation devices needed to effectively apply the algorithm to our dataset are presented in this part of the work.
author Cosma, Antonio
author_facet Cosma, Antonio
author_sort Cosma, Antonio
title Nonparametric analysis for risk management and market microstructure
title_short Nonparametric analysis for risk management and market microstructure
title_full Nonparametric analysis for risk management and market microstructure
title_fullStr Nonparametric analysis for risk management and market microstructure
title_full_unstemmed Nonparametric analysis for risk management and market microstructure
title_sort nonparametric analysis for risk management and market microstructure
publisher Universite catholique de Louvain
publishDate 2004
url http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-12132004-153308/
work_keys_str_mv AT cosmaantonio nonparametricanalysisforriskmanagementandmarketmicrostructure
_version_ 1716393770050650112