Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases
The main objective of this thesis aims at developing a new generation of software products, in order to obtain a fully automatic simulator predicting the entire Czochralski process while handling correctly the switches between the different growth stages. First of all, new efficient, robust and high...
Main Author: | |
---|---|
Format: | Others |
Language: | en |
Published: |
Universite catholique de Louvain
2008
|
Subjects: | |
Online Access: | http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09262008-100046/ |
id |
ndltd-BICfB-oai-ucl.ac.be-ETDUCL-BelnUcetd-09262008-100046 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-BICfB-oai-ucl.ac.be-ETDUCL-BelnUcetd-09262008-1000462013-01-07T15:43:38Z Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases Wu, Liang Numerical modelling Crystal growth Melt convection Mesh generation Oxygen transport Gas convection The main objective of this thesis aims at developing a new generation of software products, in order to obtain a fully automatic simulator predicting the entire Czochralski process while handling correctly the switches between the different growth stages. First of all, new efficient, robust and high-quality automatic mesh generation algorithms with enough flexibility for any complex geometry were implemented, including a 1D mesh generator by global grade-adaptive method, a 2D initial triangulation algorithm by improved sweep line technique and an automatic 2D shape-quality unstructured mesh generator by modified incremental Delaunay refinement technique. Secondly, a Finite Element Navier-Stokes solver based on unstructured meshes was developed and validated. Enhanced turbulence models based on the classical mixing-length or k-l model, together with a generic transformation method to avoid negative k when solving the turbulent kinetic energy equation by the Newton-Raphson iterative method were introduced and implemented. Moreover, laminar and turbulent mathematical models governing the gas convection, thermal distribution and oxygen concentration were developed, and Finite Element numerical methods to solve these governing equations on unstructured meshes were implemented, while appropriate numerical approaches to capture the wall shear stress exerted by the gas flow and experienced by the silicon melt were investigated. Finally, a series of numerical experiments devoted to investigate the industrial Czochralski crystal growth process under various growth conditions are presented based on all the developments implemented. Comparisons of the simulation results with literature and available experimental observations are also presented, and conclusions are drawn based on these simulation results and observations. Universite catholique de Louvain 2008-10-03 text application/pdf http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09262008-100046/ http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09262008-100046/ en unrestricted J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus. |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Numerical modelling Crystal growth Melt convection Mesh generation Oxygen transport Gas convection |
spellingShingle |
Numerical modelling Crystal growth Melt convection Mesh generation Oxygen transport Gas convection Wu, Liang Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases |
description |
The main objective of this thesis aims at developing a new generation of software products, in order to obtain a fully automatic simulator predicting the entire Czochralski process while handling correctly the switches between the different growth stages.
First of all, new efficient, robust and high-quality automatic mesh generation algorithms with enough flexibility for any complex geometry were implemented, including a 1D mesh generator by global grade-adaptive method, a 2D initial triangulation algorithm by improved sweep line technique and an automatic 2D shape-quality unstructured mesh generator by modified incremental Delaunay refinement technique.
Secondly, a Finite Element Navier-Stokes solver based on unstructured meshes was developed and validated. Enhanced turbulence models based on the classical mixing-length or k-l model, together with a generic transformation method to avoid negative k when solving the turbulent kinetic energy equation by the Newton-Raphson iterative method were introduced and implemented. Moreover, laminar and turbulent mathematical models governing the gas convection, thermal distribution and oxygen concentration were developed, and Finite Element numerical methods to solve these governing equations on unstructured meshes were implemented, while appropriate numerical approaches to capture the wall shear stress exerted by the gas flow and experienced by the silicon melt were investigated.
Finally, a series of numerical experiments devoted to investigate the industrial Czochralski crystal growth process under various growth conditions are presented based on all the developments implemented. Comparisons of the simulation results with literature and available experimental observations are also presented, and conclusions are drawn based on these simulation results and observations. |
author |
Wu, Liang |
author_facet |
Wu, Liang |
author_sort |
Wu, Liang |
title |
Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases |
title_short |
Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases |
title_full |
Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases |
title_fullStr |
Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases |
title_full_unstemmed |
Numerical simulation of Czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases |
title_sort |
numerical simulation of czochralski bulk crystal growth process : investigation of transport effects in melt and gas phases |
publisher |
Universite catholique de Louvain |
publishDate |
2008 |
url |
http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09262008-100046/ |
work_keys_str_mv |
AT wuliang numericalsimulationofczochralskibulkcrystalgrowthprocessinvestigationoftransporteffectsinmeltandgasphases |
_version_ |
1716394182992461824 |