Asymmetric cyclopentannulation reactions: scope and limitation

The first part of this dissertation is devoted to the study of an asymmetric [3+2] cycloaddition sequence developed in our laboratory. The cycloaddition sequence used a sulfonamide-based homoenolate equivalent which was cyclocondensed with a cyclic enone. The stereochemistry of the final product was...

Full description

Bibliographic Details
Main Author: Schanen, Patrick
Format: Others
Language:en
Published: Universite catholique de Louvain 2003
Subjects:
Online Access:http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09242003-153934/
id ndltd-BICfB-oai-ucl.ac.be-ETDUCL-BelnUcetd-09242003-153934
record_format oai_dc
spelling ndltd-BICfB-oai-ucl.ac.be-ETDUCL-BelnUcetd-09242003-1539342013-01-07T15:41:27Z Asymmetric cyclopentannulation reactions: scope and limitation Schanen, Patrick cyclopentannulation Michael reaction chiral sulfonamides The first part of this dissertation is devoted to the study of an asymmetric [3+2] cycloaddition sequence developed in our laboratory. The cycloaddition sequence used a sulfonamide-based homoenolate equivalent which was cyclocondensed with a cyclic enone. The stereochemistry of the final product was fixed during the first step, the Michael addition to the enone. Our study focused thus on the Michael addition of sulfonamides to enones. We have synthesized a series of chiral and achiral sulfonamides. We then studied the regiochemistry and the stereochemistry of the addition of the anions derived from these sulfonamides to cyclohexenone. The presence of a heteroatom at the (gamma)-carbon of the sulfonamide was crucial for the regiochemical outcome of the reaction. The substituent on the sulfonamide also influenced the facial selectivity of the reaction with chiral sulfonamides, but had no influence on the diastereoselectivity with achiral sulfonamides. The sequence had been applied to various cyclenones. We were also able to apply the method to an acyclic enone with good enantioselectivities. However the method could not be applied to other Michael acceptors. Another part of the present work was devoted to search a new catalytic asymmetric cyclopentannulation sequence. Two different approaches were studied. Phase-transfer catalysis seemed the most appropriate strategy for our objective. We soon realized that sulfur-stabilized nucleophiles could not be used under these conditions. Ketals derived from 3-nitropropanal were thus chosen as potential annulation agents. The racemic version was quite efficient and could be applied to less active acceptors such as unsaturated lactams and lactones. Unfortunately we were not able to realize the reaction with good enantioselectivities. However two new catalysts, obtained by the reaction of cinchonine with 1- and 2-methylnaphthyl chloride, emerged as interesting candidates for the phase-transfer reactions. Organocatalysis was our second approach. The use of rubidium prolinate or the use of proline in the presence of a base proved to be very efficient and the Michael adducts could be obtained with good enantioselectivities. The Michael adducts were easily cyclized and the nitro group could be removed under mild conditions. Universite catholique de Louvain 2003-09-26 text application/pdf http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09242003-153934/ http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09242003-153934/ en unrestricted J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserves des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.
collection NDLTD
language en
format Others
sources NDLTD
topic cyclopentannulation
Michael reaction
chiral sulfonamides
spellingShingle cyclopentannulation
Michael reaction
chiral sulfonamides
Schanen, Patrick
Asymmetric cyclopentannulation reactions: scope and limitation
description The first part of this dissertation is devoted to the study of an asymmetric [3+2] cycloaddition sequence developed in our laboratory. The cycloaddition sequence used a sulfonamide-based homoenolate equivalent which was cyclocondensed with a cyclic enone. The stereochemistry of the final product was fixed during the first step, the Michael addition to the enone. Our study focused thus on the Michael addition of sulfonamides to enones. We have synthesized a series of chiral and achiral sulfonamides. We then studied the regiochemistry and the stereochemistry of the addition of the anions derived from these sulfonamides to cyclohexenone. The presence of a heteroatom at the (gamma)-carbon of the sulfonamide was crucial for the regiochemical outcome of the reaction. The substituent on the sulfonamide also influenced the facial selectivity of the reaction with chiral sulfonamides, but had no influence on the diastereoselectivity with achiral sulfonamides. The sequence had been applied to various cyclenones. We were also able to apply the method to an acyclic enone with good enantioselectivities. However the method could not be applied to other Michael acceptors. Another part of the present work was devoted to search a new catalytic asymmetric cyclopentannulation sequence. Two different approaches were studied. Phase-transfer catalysis seemed the most appropriate strategy for our objective. We soon realized that sulfur-stabilized nucleophiles could not be used under these conditions. Ketals derived from 3-nitropropanal were thus chosen as potential annulation agents. The racemic version was quite efficient and could be applied to less active acceptors such as unsaturated lactams and lactones. Unfortunately we were not able to realize the reaction with good enantioselectivities. However two new catalysts, obtained by the reaction of cinchonine with 1- and 2-methylnaphthyl chloride, emerged as interesting candidates for the phase-transfer reactions. Organocatalysis was our second approach. The use of rubidium prolinate or the use of proline in the presence of a base proved to be very efficient and the Michael adducts could be obtained with good enantioselectivities. The Michael adducts were easily cyclized and the nitro group could be removed under mild conditions.
author Schanen, Patrick
author_facet Schanen, Patrick
author_sort Schanen, Patrick
title Asymmetric cyclopentannulation reactions: scope and limitation
title_short Asymmetric cyclopentannulation reactions: scope and limitation
title_full Asymmetric cyclopentannulation reactions: scope and limitation
title_fullStr Asymmetric cyclopentannulation reactions: scope and limitation
title_full_unstemmed Asymmetric cyclopentannulation reactions: scope and limitation
title_sort asymmetric cyclopentannulation reactions: scope and limitation
publisher Universite catholique de Louvain
publishDate 2003
url http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09242003-153934/
work_keys_str_mv AT schanenpatrick asymmetriccyclopentannulationreactionsscopeandlimitation
_version_ 1716393731731488768