Summary: | In this doctoral dissertation, we studied and solved several questions regarding positional and abstract numeration systems. Each particular problem is the focus of a chapter. The first problem concerns the study of the preservation of recognizability under multiplication by a constant in abstract numeration systems built on polynomial regular languages. We obtained several results generalizing those from P. Lecomte and M. Rigo. The second problem we considered is a decidability problem, which was already studied, most notably, by J. Honkala and A. Muchnik. For our part, we studied this problem for two new cases: the linear positional numeration systems and the abstract numeration systems. Next, we focused on the extension to the multidimensional setting of a result of A. Maes and M.~Rigo regarding S-automatic infinite words. We obtained a characterization of multidimensional S-automatic words in terms of multidimensional (non-necessarily uniform) morphisms. This result can be viewed as the analogous of O. Salon's extension of a theorem of A. Cobham. Finally, generalizing results of P. Lecomte and M. Rigo, we proposed a formalism to represent real numbers in the general framework of abstract numeration systems built on languages that are not necessarily regular. This formalism encompasses in particular the rational base numeration systems, which have been recently introduced by S. Akiyama, Ch. Frougny, and J. Sakarovitch. Finally, we ended with a list of open questions in the continuation of this work./Dans cette dissertation, nous étudions et résolvons plusieurs questions autour des systèmes de numération abstraits. Chaque problème étudié fait l'objet d'un chapitre. Le premier concerne l'étude de la conservation de la reconnaissabilité par la multiplication par une constante dans des systèmes de numération abstraits construits sur des langages réguliers polynomiaux. Nous avons obtenus plusieurs résultats intéressants généralisant ceux de P. Lecomte et M. Rigo. Le deuxième problème auquel je me suis intéressée est un problème de décidabilité déjà étudié notamment par J. Honkala et A. Muchnik et ici décliné en deux nouvelles versions : les systèmes de numération de position linéaires et les systèmes de numération abstraits. Ensuite, nous nous penchons sur l'extension au cas multidimensionnel d'un résultat d'A. Maes et de M. Rigo à propos des mots infinis S-automatiques. Nous avons obtenu une caractérisation des mots S-automatiques multidimensionnels en termes de morphismes multidimensionnels (non nécessairement uniformes). Ce résultat peut être vu comme un analogue de l'extension obtenue par O. Salon d'un théorème de A. Cobham. Finalement, nous proposons un formalisme de la représentation des nombres réels dans le cadre général des systèmes de numération abstraits basés sur des langages qui ne sont pas nécessairement réguliers. Ce formalisme englobe notamment le cas des numérations en bases rationnelles introduits récemment par S. Akiyama, Ch. Frougny et J. Sakarovitch. Nous terminons par une liste de questions ouvertes dans la continuité de ce travail.
|