The Application of Synthetic Signals for ECG Beat Classification

A brief overview of electrocardiogram (ECG) properties and the characteristics of various cardiac conditions is given. Two different models are used to generate synthetic ECG signals. Domain knowledge is used to create synthetic examples of 16 different heart beat types with these models. Other tech...

Full description

Bibliographic Details
Main Author: Brown, Elliot Morgan
Format: Others
Published: BYU ScholarsArchive 2019
Subjects:
ECG
Online Access:https://scholarsarchive.byu.edu/etd/8116
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=9116&context=etd
Description
Summary:A brief overview of electrocardiogram (ECG) properties and the characteristics of various cardiac conditions is given. Two different models are used to generate synthetic ECG signals. Domain knowledge is used to create synthetic examples of 16 different heart beat types with these models. Other techniques for synthesizing ECG signals are explored. Various machine learning models with different combinations of real and synthetic data are used to classify individual heart beats. The performance of the different methods and models are compared, and synthetic data is shown to be useful in beat classification.