Multi-Stage Construction of the Little Cottonwood Stock, Utah: Origin, Intrusion, Venting,Mineralization, and Mass Movement
The Little Cottonwood stock in central Utah, USA, is a composite granitic pluton that hosts the White Pine porphyry Mo-W deposit towards its northeast margin. The deposit is centered on the smaller White Pine intrusion, and associated igneous units include the Red Pine porphyry, phreatomagmatic pebb...
Main Author: | |
---|---|
Format: | Others |
Published: |
BYU ScholarsArchive
2019
|
Subjects: | |
Online Access: | https://scholarsarchive.byu.edu/etd/7552 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=8552&context=etd |
Summary: | The Little Cottonwood stock in central Utah, USA, is a composite granitic pluton that hosts the White Pine porphyry Mo-W deposit towards its northeast margin. The deposit is centered on the smaller White Pine intrusion, and associated igneous units include the Red Pine porphyry, phreatomagmatic pebble dikes, and rhyolite dikes. Twelve new U-Pb zircon LA-ICP-MS ages, for samples from this deposit and in pebble dikes from the nearby East Traverse Mountains, give peak ages of about 30 Ma and 27 Ma for the Little Cottonwood stock and White Pine intrusion, respectively, which correlate well with ages from previous studies. Ages of about 26 Ma were obtained for the previously undated Red Pine porphyry.The ages of the Little Cottonwood stock, White Pine intrusion, and Red Pine porphyry, as well as disparities in whole rock elemental differentiation trends, suggest that these units are magmatically distinct, and are not simply derivatives of one another with varying degrees of differentiation. Quench textures and resorbed quartz in the Red Pine porphyry are evidence that the magma system vented, which probably produced volcanic eruptions and emplacement of pebble dikes nearly synchronously with quartz-sericite-pyrite alteration and Mo-W mineralization. The mineralogy and geochemistry of these units imply that the magmas formed in a subduction-related magmatic arc setting rather than in an extensional basin related to orogenic collapse.Pebble dikes in the East Traverse Mountains 17 km away contain igneous clasts that resemble the units in the White Pine deposit in texture, mineralogy, and in U-Pb zircon ages. This supports other recent studies that suggest that the East Traverse Mountains rested atop the White Pine deposit prior to being displaced in a mega-landslide, and the pebble dikes in both locations are the top and bottom of the same mineralized phreatomagmatic system.The construction of the pluton began with intrusion of the Little Cottonwood stock, then the White Pine and Red Pine magmas. Fluid exsolution from the Red Pine magma accompanied venting, inception of the mineralizing hydrothermal system, and quenching to a porphyritic stock. Pebble dikes intruded into the overlying East Traverse Mountain block, which catastrophically failed millions of years later and was emplaced in its current location. |
---|