Mechanically Scanned Interference Pattern Structured Illumination Imaging
A method of lensless, single pixel imaging is presented. This method, referred to as MAS-IPSII, is theoretically capable of resolutions as small as one quarter of the wavelength of the imaging light. The resolution is not limited by the aperture of any optic, making high resolutions (including subwa...
Main Author: | |
---|---|
Format: | Others |
Published: |
BYU ScholarsArchive
2019
|
Subjects: | |
Online Access: | https://scholarsarchive.byu.edu/etd/7483 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=8483&context=etd |
Summary: | A method of lensless, single pixel imaging is presented. This method, referred to as MAS-IPSII, is theoretically capable of resolutions as small as one quarter of the wavelength of the imaging light. The resolution is not limited by the aperture of any optic, making high resolutions (including subwavelength) feasible even at very large (greater than a meter) distances. Imaging requires only flat optics and a coherent source, making it a good candidate for imaging with extreme wavelengths in the UV and x-ray regimes. The method is demonstrated by the imaging of various test targets. Both real and complex imaging (i.e. holography) is demonstrated. |
---|