Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass
In this work, the Shear Transformation Zone (STZ) dynamics model is adapted to capture the transitions between different regimes of flow serration in the deformation map of metallic glass. This was accomplished by scaling the STZ volume with a log-linear fit to the strain rate, and also adjusting th...
Main Author: | |
---|---|
Format: | Others |
Published: |
BYU ScholarsArchive
2015
|
Subjects: | |
Online Access: | https://scholarsarchive.byu.edu/etd/6145 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7145&context=etd |
id |
ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-7145 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-71452019-05-16T03:34:19Z Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass Harris, Matthew Bradley In this work, the Shear Transformation Zone (STZ) dynamics model is adapted to capture the transitions between different regimes of flow serration in the deformation map of metallic glass. This was accomplished by scaling the STZ volume with a log-linear fit to the strain rate, and also adjusting the activation energy of an STZ with a log-linear fit to maintain constant yield strength at differing strain rates. Twelve simulations are run at each of six different strain rates ranging from 10-5 to 100 s-1, and statistics are collected on simulation behavior and shear band nucleation and propagation rates. The simulations show shear band nucleation has a positive correlation to strain rate, and shear band propagation has a negative correlation to strain rate. This shows that in STZ dynamics, the regime of reduced flow serration arises due to competing rates of nucleation and propagation, supporting the hypothesis proposed by Schuh. A positive correlation between critical shear band nucleus size and strain rate is proposed as an underlying cause of these rate dependencies. 2015-12-01T08:00:00Z text application/pdf https://scholarsarchive.byu.edu/etd/6145 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7145&context=etd http://lib.byu.edu/about/copyright/ All Theses and Dissertations BYU ScholarsArchive shear transformation zone shear band mesoscale deformation strain rate metallic glass flow serration Mechanical Engineering |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
shear transformation zone shear band mesoscale deformation strain rate metallic glass flow serration Mechanical Engineering |
spellingShingle |
shear transformation zone shear band mesoscale deformation strain rate metallic glass flow serration Mechanical Engineering Harris, Matthew Bradley Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass |
description |
In this work, the Shear Transformation Zone (STZ) dynamics model is adapted to capture the transitions between different regimes of flow serration in the deformation map of metallic glass. This was accomplished by scaling the STZ volume with a log-linear fit to the strain rate, and also adjusting the activation energy of an STZ with a log-linear fit to maintain constant yield strength at differing strain rates. Twelve simulations are run at each of six different strain rates ranging from 10-5 to 100 s-1, and statistics are collected on simulation behavior and shear band nucleation and propagation rates. The simulations show shear band nucleation has a positive correlation to strain rate, and shear band propagation has a negative correlation to strain rate. This shows that in STZ dynamics, the regime of reduced flow serration arises due to competing rates of nucleation and propagation, supporting the hypothesis proposed by Schuh. A positive correlation between critical shear band nucleus size and strain rate is proposed as an underlying cause of these rate dependencies. |
author |
Harris, Matthew Bradley |
author_facet |
Harris, Matthew Bradley |
author_sort |
Harris, Matthew Bradley |
title |
Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass |
title_short |
Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass |
title_full |
Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass |
title_fullStr |
Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass |
title_full_unstemmed |
Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic Glass |
title_sort |
elucidating the mechanisms of rate-dependent deformation at ambient temperatures in a model metallic glass |
publisher |
BYU ScholarsArchive |
publishDate |
2015 |
url |
https://scholarsarchive.byu.edu/etd/6145 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7145&context=etd |
work_keys_str_mv |
AT harrismatthewbradley elucidatingthemechanismsofratedependentdeformationatambienttemperaturesinamodelmetallicglass |
_version_ |
1719187209397993472 |