The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies
This thesis develops a new abstraction for solving problems in decision automation. Decision automation is the process of creating algorithms which use data to make decisions without the need for human intervention. In this abstraction, four key ideas/problems are highlighted which must be considere...
Main Author: | |
---|---|
Format: | Others |
Published: |
BYU ScholarsArchive
2010
|
Subjects: | |
Online Access: | https://scholarsarchive.byu.edu/etd/2045 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3044&context=etd |
id |
ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-3044 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-30442021-09-12T05:00:59Z The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies Durtschi, Blake Edward This thesis develops a new abstraction for solving problems in decision automation. Decision automation is the process of creating algorithms which use data to make decisions without the need for human intervention. In this abstraction, four key ideas/problems are highlighted which must be considered when solving any decision problem. These four problems are the decision problem, the learning problem, the model reduction problem, and the verification problem. One of the benefits of this abstraction is that a wide range of decision problems from many different areas can be broken down into these four “key” sub-problems. By focusing on these key sub-problems and the interactions between them, one can systematically arrive at a solution to the original problem. Three new learning platforms have been developed in the areas of portfolio optimization, business intelligence, and automated water management in order to demonstrate how this abstraction can be applied to three different types of problems. For the automated water management platform a full solution to the problem is developed using this abstraction. This yields an automated decision process which decides how much water to release from the Piute Reservoir into the Sevier River during an irrigation season. Another motivation for developing these learning platforms is that they can be used to introduce students of all disciplines to automated decision making. 2010-03-15T07:00:00Z text application/pdf https://scholarsarchive.byu.edu/etd/2045 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3044&context=etd http://lib.byu.edu/about/copyright/ Theses and Dissertations BYU ScholarsArchive algorithmic decision processes learning platforms automated water management water control learning Tour de Finance Sevier River Piute Dam decision automation decision decision architecture Computer Sciences |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
algorithmic decision processes learning platforms automated water management water control learning Tour de Finance Sevier River Piute Dam decision automation decision decision architecture Computer Sciences |
spellingShingle |
algorithmic decision processes learning platforms automated water management water control learning Tour de Finance Sevier River Piute Dam decision automation decision decision architecture Computer Sciences Durtschi, Blake Edward The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies |
description |
This thesis develops a new abstraction for solving problems in decision automation. Decision automation is the process of creating algorithms which use data to make decisions without the need for human intervention. In this abstraction, four key ideas/problems are highlighted which must be considered when solving any decision problem. These four problems are the decision problem, the learning problem, the model reduction problem, and the verification problem. One of the benefits of this abstraction is that a wide range of decision problems from many different areas can be broken down into these four “key” sub-problems. By focusing on these key sub-problems and the interactions between them, one can systematically arrive at a solution to the original problem. Three new learning platforms have been developed in the areas of portfolio optimization, business intelligence, and automated water management in order to demonstrate how this abstraction can be applied to three different types of problems. For the automated water management platform a full solution to the problem is developed using this abstraction. This yields an automated decision process which decides how much water to release from the Piute Reservoir into the Sevier River during an irrigation season. Another motivation for developing these learning platforms is that they can be used to introduce students of all disciplines to automated decision making. |
author |
Durtschi, Blake Edward |
author_facet |
Durtschi, Blake Edward |
author_sort |
Durtschi, Blake Edward |
title |
The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies |
title_short |
The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies |
title_full |
The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies |
title_fullStr |
The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies |
title_full_unstemmed |
The Role of Algorithmic Decision Processes in Decision Automation: Three Case Studies |
title_sort |
role of algorithmic decision processes in decision automation: three case studies |
publisher |
BYU ScholarsArchive |
publishDate |
2010 |
url |
https://scholarsarchive.byu.edu/etd/2045 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3044&context=etd |
work_keys_str_mv |
AT durtschiblakeedward theroleofalgorithmicdecisionprocessesindecisionautomationthreecasestudies AT durtschiblakeedward roleofalgorithmicdecisionprocessesindecisionautomationthreecasestudies |
_version_ |
1719480321156579328 |