Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code
Beryllium-7 (Be-7) only decays by electron capture into lithium-7 (Li-7) with a half life of 53 days. We study the effect of ionization on this decay rate. We do so by trapping a Be-7 ion plasma in a cylindrical Malmberg-Penning trap and measuring Be-7 and Li-7 concentrations as functions of time by...
Main Author: | |
---|---|
Format: | Others |
Published: |
BYU ScholarsArchive
2010
|
Subjects: | |
Online Access: | https://scholarsarchive.byu.edu/etd/2003 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3002&context=etd |
id |
ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-3002 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-30022021-09-01T05:01:40Z Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code Nakata, Michael Takeshi Beryllium-7 (Be-7) only decays by electron capture into lithium-7 (Li-7) with a half life of 53 days. We study the effect of ionization on this decay rate. We do so by trapping a Be-7 ion plasma in a cylindrical Malmberg-Penning trap and measuring Be-7 and Li-7 concentrations as functions of time by using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). We have simulated these signals in a 2-dimensional electrostatic particle-in-cell (PIC) code. The two spectrum peaks merge at high ion densities whereas at low ion densities they can be resolved. The merged peak shifts linearly according to the relative abundances of these species. We have also simulated singly-ionized beryllium-7 hydride (BeH+) and Li-7 ion plasmas at high densities. These two separate peaks shift according to their relative abundances. We describe an analytical model that explains how these peaks shift. 2010-01-15T08:00:00Z text application/pdf https://scholarsarchive.byu.edu/etd/2003 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3002&context=etd http://lib.byu.edu/about/copyright/ Theses and Dissertations BYU ScholarsArchive beryllium-7 electron capture lithium-7 ion plasma Fourier transform ion cyclotron mass spectrometry FTICR-MS FTMS 2D electrostatic particle-in-cell PIC simulation Astrophysics and Astronomy Physics |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
beryllium-7 electron capture lithium-7 ion plasma Fourier transform ion cyclotron mass spectrometry FTICR-MS FTMS 2D electrostatic particle-in-cell PIC simulation Astrophysics and Astronomy Physics |
spellingShingle |
beryllium-7 electron capture lithium-7 ion plasma Fourier transform ion cyclotron mass spectrometry FTICR-MS FTMS 2D electrostatic particle-in-cell PIC simulation Astrophysics and Astronomy Physics Nakata, Michael Takeshi Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code |
description |
Beryllium-7 (Be-7) only decays by electron capture into lithium-7 (Li-7) with a half life of 53 days. We study the effect of ionization on this decay rate. We do so by trapping a Be-7 ion plasma in a cylindrical Malmberg-Penning trap and measuring Be-7 and Li-7 concentrations as functions of time by using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). We have simulated these signals in a 2-dimensional electrostatic particle-in-cell (PIC) code. The two spectrum peaks merge at high ion densities whereas at low ion densities they can be resolved. The merged peak shifts linearly according to the relative abundances of these species. We have also simulated singly-ionized beryllium-7 hydride (BeH+) and Li-7 ion plasmas at high densities. These two separate peaks shift according to their relative abundances. We describe an analytical model that explains how these peaks shift. |
author |
Nakata, Michael Takeshi |
author_facet |
Nakata, Michael Takeshi |
author_sort |
Nakata, Michael Takeshi |
title |
Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code |
title_short |
Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code |
title_full |
Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code |
title_fullStr |
Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code |
title_full_unstemmed |
Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code |
title_sort |
simulating the fticr-ms signal of a decaying beryllium-7 ion plasma in a 2d electrostatic pic code |
publisher |
BYU ScholarsArchive |
publishDate |
2010 |
url |
https://scholarsarchive.byu.edu/etd/2003 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3002&context=etd |
work_keys_str_mv |
AT nakatamichaeltakeshi simulatingthefticrmssignalofadecayingberyllium7ionplasmaina2delectrostaticpiccode |
_version_ |
1719473278644387840 |