Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting

The quadrotor helicopter is a unique flying vehicle which uses the thrust from four motors to provide hover flight capability. The uncoupled nature of the longitudinal and lateral axes and its ability to support large payloads with respect to its size make it an attractive vehicle for autonomous veh...

Full description

Bibliographic Details
Main Author: Johnson, Neil G.
Format: Others
Published: BYU ScholarsArchive 2008
Subjects:
Online Access:https://scholarsarchive.byu.edu/etd/1425
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2424&context=etd
id ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-2424
record_format oai_dc
spelling ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-24242019-05-16T03:28:15Z Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting Johnson, Neil G. The quadrotor helicopter is a unique flying vehicle which uses the thrust from four motors to provide hover flight capability. The uncoupled nature of the longitudinal and lateral axes and its ability to support large payloads with respect to its size make it an attractive vehicle for autonomous vehicle research. In this thesis, the quadrotor is modeled based on first principles and a proportional-derivative control method is applied for attitude stabilization and position control. A unique means of using an optic flow sensor for velocity and position estimation in an indoor setting is presented with flight results. Reliable hover flight and hallway following capabilities are exhibited in GPS-denied indoor flight using only onboard sensors. Attitude angles can be reliably estimated in the short run by integrating the angular rates from MEMS gyros, but noise on the signal leads to drift which renders the measurement unsuitable to attitude estimation. Typical methods of providing vector attitude corrections such as accelerometers and magnetometers have inherent weaknesses on hovering vehicles. Thus, an additional vector measurement is necessary to correct attitude readings for long-term flights. Two methods of using image processing to determine vanishing points in a hallway are demonstrated. The more promising of the two uses a Hough transform to detect lines in the image and forms a histogram of the intersections to detect likely vanishing point candidates. Once the vanishing point is detected, it acts as a vector measurement to correct attitude estimates on the quadrotor vehicle. Results using onboard vision to estimate heading are demonstrated on a test stand. Together, these capabilities improve the utility of the quadrotor platform for flight without the need of any external sensing capability. 2008-06-22T07:00:00Z text application/pdf https://scholarsarchive.byu.edu/etd/1425 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2424&context=etd http://lib.byu.edu/about/copyright/ All Theses and Dissertations BYU ScholarsArchive quadrotor helicopter attitude estimation computer vision vanishing point detection optic flow sensor MAGICC Lab Mechanical Engineering
collection NDLTD
format Others
sources NDLTD
topic quadrotor
helicopter
attitude estimation
computer vision
vanishing point detection
optic flow sensor
MAGICC Lab
Mechanical Engineering
spellingShingle quadrotor
helicopter
attitude estimation
computer vision
vanishing point detection
optic flow sensor
MAGICC Lab
Mechanical Engineering
Johnson, Neil G.
Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting
description The quadrotor helicopter is a unique flying vehicle which uses the thrust from four motors to provide hover flight capability. The uncoupled nature of the longitudinal and lateral axes and its ability to support large payloads with respect to its size make it an attractive vehicle for autonomous vehicle research. In this thesis, the quadrotor is modeled based on first principles and a proportional-derivative control method is applied for attitude stabilization and position control. A unique means of using an optic flow sensor for velocity and position estimation in an indoor setting is presented with flight results. Reliable hover flight and hallway following capabilities are exhibited in GPS-denied indoor flight using only onboard sensors. Attitude angles can be reliably estimated in the short run by integrating the angular rates from MEMS gyros, but noise on the signal leads to drift which renders the measurement unsuitable to attitude estimation. Typical methods of providing vector attitude corrections such as accelerometers and magnetometers have inherent weaknesses on hovering vehicles. Thus, an additional vector measurement is necessary to correct attitude readings for long-term flights. Two methods of using image processing to determine vanishing points in a hallway are demonstrated. The more promising of the two uses a Hough transform to detect lines in the image and forms a histogram of the intersections to detect likely vanishing point candidates. Once the vanishing point is detected, it acts as a vector measurement to correct attitude estimates on the quadrotor vehicle. Results using onboard vision to estimate heading are demonstrated on a test stand. Together, these capabilities improve the utility of the quadrotor platform for flight without the need of any external sensing capability.
author Johnson, Neil G.
author_facet Johnson, Neil G.
author_sort Johnson, Neil G.
title Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting
title_short Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting
title_full Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting
title_fullStr Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting
title_full_unstemmed Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting
title_sort vision-assisted control of a hovering air vehicle in an indoor setting
publisher BYU ScholarsArchive
publishDate 2008
url https://scholarsarchive.byu.edu/etd/1425
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2424&context=etd
work_keys_str_mv AT johnsonneilg visionassistedcontrolofahoveringairvehicleinanindoorsetting
_version_ 1719186042031964160