Construction of a Calcium Matter-Wave Interferometer

I describe the construction of a calcium matter-wave interferometer. The interferometer is based on a Ramsey-Borde scheme, and uses a thermal beam of atoms excited by an optical-frequency transition in calcium. In our experiment four pi/2 pulses of light are delivered to the atoms, which split and r...

Full description

Bibliographic Details
Main Author: Erickson, Christopher Joseph
Format: Others
Published: BYU ScholarsArchive 2007
Subjects:
Online Access:https://scholarsarchive.byu.edu/etd/1227
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2226&context=etd
Description
Summary:I describe the construction of a calcium matter-wave interferometer. The interferometer is based on a Ramsey-Borde scheme, and uses a thermal beam of atoms excited by an optical-frequency transition in calcium. In our experiment four pi/2 pulses of light are delivered to the atoms, which split and recombine the wave functions of the atoms. Our experimental design minimizes first-order Doppler shifts, and allows for the cancellation of systematic errors including phase shifts due to rotation and acceleration. I describe the individual components of the interferometer and its assembly. The requirements for the electronics used in the experiment as well as their design and performance are described in great detail. I also give an overview of the techniques used to passively stabilize the laser and optical components. Finally, I report on the current status of the experiment as well as detail future work to be done on the apparatus.