On the N-body Problem

In this thesis, central configurations, regularization of Simultaneous binary collision, linear stability of Kepler orbits, and index theory for symplectic path are studied. The history of their study is summarized in section 1. Section 2 deals with the following problem: given a collinear configura...

Full description

Bibliographic Details
Main Author: Xie, Zhifu
Format: Others
Published: BYU ScholarsArchive 2006
Subjects:
Online Access:https://scholarsarchive.byu.edu/etd/787
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd
id ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-1786
record_format oai_dc
spelling ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-17862021-08-21T05:01:00Z On the N-body Problem Xie, Zhifu In this thesis, central configurations, regularization of Simultaneous binary collision, linear stability of Kepler orbits, and index theory for symplectic path are studied. The history of their study is summarized in section 1. Section 2 deals with the following problem: given a collinear configuration of 4 bodies, under what conditions is it possible to choose positive masses which make it central. It is always possible to choose three positive masses such that the given three positions with the masses form a central configuration. However, for an arbitrary configuration of 4 bodies, it is not always possible to find positive masses forming a central configuration. An expression of four masses is established depending on the position x and the center of mass u, which gives a central configuration in the collinear four body problem. Specifically it is proved that there is a compact region in which no central configuration is possible for positive masses. Conversely, for any configuration in the complement of the compact region, it is always possible to choose positive masses to make the configuration central. The singularities of simultaneous binary collisions in collinear four-body problem is regularized by explicitly constructing new coordinates and time transformation in section 3. The motion in the new coordinates and time scale across simultaneous binary collision is at least C^2. Furthermore, the behavior of the motion closing, across and after the simultaneous binary collision, is also studied. Many different types of periodic solutions involving single binary collisions and simultaneous binary collisions are constructed. In section 4, the linear stability is studied for the Kepler orbits of the rhombus four-body problem. We show that, for given four proper masses, there exists a family of periodic solutions for which each body with the proper mass is at the vertex of a rhombus and travels along an elliptic Kepler orbit. Instead of studying the 8 degrees of freedom Hamilton system for planar four-body problem, we reduce this number by means of some symmetry to derive a two degrees of freedom system which then can be used to determine the linear instability of the periodic solutions. After making a clever change of coordinates, a two dimensional ordinary differential equation system is obtained, which governs the linear instability of the periodic solutions. The system is surprisingly simple and depends only on the length of the sides of the rhombus and the eccentricity e of the Kepler orbit. In section 5, index theory for symplectic paths introduced by Y.Long is applied to study the stability of a periodic solution x for a Hamiltonian system. We establish a necessary and sufficient condition for stability of the periodic solution x in two and four dimension. 2006-07-14T07:00:00Z text application/pdf https://scholarsarchive.byu.edu/etd/787 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd http://lib.byu.edu/about/copyright/ Theses and Dissertations BYU ScholarsArchive N-body Problem Central Configuration Collision Regulariztiion Periodic Solution Periodic Solution with Collision Stability Kepler Solution Homographic Solution Hamiltonian System Index Theory Symplectic Group Symplectic Path Mathematics
collection NDLTD
format Others
sources NDLTD
topic N-body Problem
Central Configuration
Collision
Regulariztiion
Periodic Solution
Periodic Solution with Collision
Stability
Kepler Solution
Homographic Solution
Hamiltonian System
Index Theory
Symplectic Group
Symplectic Path
Mathematics
spellingShingle N-body Problem
Central Configuration
Collision
Regulariztiion
Periodic Solution
Periodic Solution with Collision
Stability
Kepler Solution
Homographic Solution
Hamiltonian System
Index Theory
Symplectic Group
Symplectic Path
Mathematics
Xie, Zhifu
On the N-body Problem
description In this thesis, central configurations, regularization of Simultaneous binary collision, linear stability of Kepler orbits, and index theory for symplectic path are studied. The history of their study is summarized in section 1. Section 2 deals with the following problem: given a collinear configuration of 4 bodies, under what conditions is it possible to choose positive masses which make it central. It is always possible to choose three positive masses such that the given three positions with the masses form a central configuration. However, for an arbitrary configuration of 4 bodies, it is not always possible to find positive masses forming a central configuration. An expression of four masses is established depending on the position x and the center of mass u, which gives a central configuration in the collinear four body problem. Specifically it is proved that there is a compact region in which no central configuration is possible for positive masses. Conversely, for any configuration in the complement of the compact region, it is always possible to choose positive masses to make the configuration central. The singularities of simultaneous binary collisions in collinear four-body problem is regularized by explicitly constructing new coordinates and time transformation in section 3. The motion in the new coordinates and time scale across simultaneous binary collision is at least C^2. Furthermore, the behavior of the motion closing, across and after the simultaneous binary collision, is also studied. Many different types of periodic solutions involving single binary collisions and simultaneous binary collisions are constructed. In section 4, the linear stability is studied for the Kepler orbits of the rhombus four-body problem. We show that, for given four proper masses, there exists a family of periodic solutions for which each body with the proper mass is at the vertex of a rhombus and travels along an elliptic Kepler orbit. Instead of studying the 8 degrees of freedom Hamilton system for planar four-body problem, we reduce this number by means of some symmetry to derive a two degrees of freedom system which then can be used to determine the linear instability of the periodic solutions. After making a clever change of coordinates, a two dimensional ordinary differential equation system is obtained, which governs the linear instability of the periodic solutions. The system is surprisingly simple and depends only on the length of the sides of the rhombus and the eccentricity e of the Kepler orbit. In section 5, index theory for symplectic paths introduced by Y.Long is applied to study the stability of a periodic solution x for a Hamiltonian system. We establish a necessary and sufficient condition for stability of the periodic solution x in two and four dimension.
author Xie, Zhifu
author_facet Xie, Zhifu
author_sort Xie, Zhifu
title On the N-body Problem
title_short On the N-body Problem
title_full On the N-body Problem
title_fullStr On the N-body Problem
title_full_unstemmed On the N-body Problem
title_sort on the n-body problem
publisher BYU ScholarsArchive
publishDate 2006
url https://scholarsarchive.byu.edu/etd/787
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd
work_keys_str_mv AT xiezhifu onthenbodyproblem
_version_ 1719460804049240064