Determining High School Geometry Students' Geometric Understanding Using van Hiele Levels: Is There a Difference Between Standards-based Curriculum Students and NonStandards-based Curriculum Students?
Research has found that students are not adequately prepared to understand the concepts of geometry, as they are presented in a high school geometry course (e.g. Burger and Shaughnessy (1986), Usiskin (1982), van Hiele (1986)). Curricula based on the National Council of Teachers of Mathematics (NCTM...
Main Author: | |
---|---|
Format: | Others |
Published: |
BYU ScholarsArchive
2006
|
Subjects: | |
Online Access: | https://scholarsarchive.byu.edu/etd/519 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1518&context=etd |
Summary: | Research has found that students are not adequately prepared to understand the concepts of geometry, as they are presented in a high school geometry course (e.g. Burger and Shaughnessy (1986), Usiskin (1982), van Hiele (1986)). Curricula based on the National Council of Teachers of Mathematics (NCTM) Standards (1989, 2000) have been developed and introduced into the middle grades to improve learning and concept development in mathematics. Research done by Rey, Reys, Lappan and Holliday (2003) showed that Standards-based curricula improve students' mathematical understanding and performance on standardized math exams. Using van Hiele levels, this study examines 20 ninth-grade students' levels of geometric understanding at the beginning of their high school geometry course. Ten of the students had been taught mathematics using a Standards-based curriculum, the Connected Mathematics Project (CMP), during grades 6, 7, and 8, and the remaining 10 students had been taught from a traditional curriculum in grades 6, 7, and 8. Students with a Connected Mathematics project background tended to show higher levels of geometric understanding than the students with a more traditional curriculum (NONcmp) background. Three distinctions of students' geometric understanding were identified among students within a given van Hiele level, one of which was the students' use of language. The use of precise versus imprecise language in students' explanations and reasoning is a major distinguishing factor between different levels of geometric understanding among the students in this study. Another distinction among students' geometric understanding is the ability to clearly verbalize an infinite variety of shapes versus not being able to verbalize an infinite variety of shapes. The third distinction identified among students' geometric understanding is that of understanding the necessary properties of specific shapes versus understanding only a couple of necessary properties for specific shapes. |
---|