Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer

The inductively coupled plasma - mass spectrometer (ICP-MS) is the analytical instrument of choice for trace element detection and quantification. Despite the popularity of ICP-MS, significant degradation in sensitivity and precision occurs as the result of matrix and instrument-induced effects. The...

Full description

Bibliographic Details
Main Author: Radicic, William Neil
Format: Others
Published: BYU ScholarsArchive 2004
Subjects:
ion
Online Access:https://scholarsarchive.byu.edu/etd/39
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1038&context=etd
id ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-1038
record_format oai_dc
spelling ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-10382019-05-16T03:25:32Z Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer Radicic, William Neil The inductively coupled plasma - mass spectrometer (ICP-MS) is the analytical instrument of choice for trace element detection and quantification. Despite the popularity of ICP-MS, significant degradation in sensitivity and precision occurs as the result of matrix and instrument-induced effects. The sources of these effects are not well understood, characterized, or correlated to particular plasma operating condition settings or matrix compositions and involve both neutral and charged species. The purpose of this study is to characterize the behavior of metastable Ar (I) atom and Ca (II) ion through the measurement of Doppler velocities and fluorescence line width "temperatures." For the characterization of Ar (I), axial and radial velocity and temperature profiles were collected as a function of nebulizer rate, incident ICP power and matrix composition to establish a behavioral baseline for neutral species in the first vacuum stage expansion of an ICP-MS. Velocities were determined from the Doppler shift of laser-induced Ar (I) fluorescence compared to stationary population wavelength reference. Unambiguous evidence of a thick Mach disk forming 10-12 mm downstream and persisting through 17-18 mm downstream, under standard ICP conditions, conflicts with the widely held view of a thin Mach disk located between 15-17 mm downstream. Characterization of Ca (II) ion focused on the effect of changing ICP conditions and matrix composition on calcium ion Doppler velocity and temperature profiles in the first vacuum stage expansion. Evidence of the plasma potential acceleration of ions through the interface was found as a higher Ca (II) terminal velocity than that of Ar (I) under standard ICP conditions. Additionally, the effect of a lithium matrix on Ca (II) velocity and temperature profiles was generally opposite than on Ar (I) velocity and temperature profiles. 2004-05-21T07:00:00Z text application/pdf https://scholarsarchive.byu.edu/etd/39 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1038&context=etd http://lib.byu.edu/about/copyright/ All Theses and Dissertations BYU ScholarsArchive ICP-MS characterization atom ion first vacuum stage matrix effects temperature velocity Biochemistry Chemistry
collection NDLTD
format Others
sources NDLTD
topic ICP-MS
characterization
atom
ion
first vacuum stage
matrix effects
temperature
velocity
Biochemistry
Chemistry
spellingShingle ICP-MS
characterization
atom
ion
first vacuum stage
matrix effects
temperature
velocity
Biochemistry
Chemistry
Radicic, William Neil
Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer
description The inductively coupled plasma - mass spectrometer (ICP-MS) is the analytical instrument of choice for trace element detection and quantification. Despite the popularity of ICP-MS, significant degradation in sensitivity and precision occurs as the result of matrix and instrument-induced effects. The sources of these effects are not well understood, characterized, or correlated to particular plasma operating condition settings or matrix compositions and involve both neutral and charged species. The purpose of this study is to characterize the behavior of metastable Ar (I) atom and Ca (II) ion through the measurement of Doppler velocities and fluorescence line width "temperatures." For the characterization of Ar (I), axial and radial velocity and temperature profiles were collected as a function of nebulizer rate, incident ICP power and matrix composition to establish a behavioral baseline for neutral species in the first vacuum stage expansion of an ICP-MS. Velocities were determined from the Doppler shift of laser-induced Ar (I) fluorescence compared to stationary population wavelength reference. Unambiguous evidence of a thick Mach disk forming 10-12 mm downstream and persisting through 17-18 mm downstream, under standard ICP conditions, conflicts with the widely held view of a thin Mach disk located between 15-17 mm downstream. Characterization of Ca (II) ion focused on the effect of changing ICP conditions and matrix composition on calcium ion Doppler velocity and temperature profiles in the first vacuum stage expansion. Evidence of the plasma potential acceleration of ions through the interface was found as a higher Ca (II) terminal velocity than that of Ar (I) under standard ICP conditions. Additionally, the effect of a lithium matrix on Ca (II) velocity and temperature profiles was generally opposite than on Ar (I) velocity and temperature profiles.
author Radicic, William Neil
author_facet Radicic, William Neil
author_sort Radicic, William Neil
title Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer
title_short Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer
title_full Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer
title_fullStr Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer
title_full_unstemmed Velocity and Temperature Characterization of the First Vacuum Stage Expansion in an Inductively Coupled Plasma - Mass Spectrometer
title_sort velocity and temperature characterization of the first vacuum stage expansion in an inductively coupled plasma - mass spectrometer
publisher BYU ScholarsArchive
publishDate 2004
url https://scholarsarchive.byu.edu/etd/39
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1038&context=etd
work_keys_str_mv AT radicicwilliamneil velocityandtemperaturecharacterizationofthefirstvacuumstageexpansioninaninductivelycoupledplasmamassspectrometer
_version_ 1719186015690686464