Sound and noisy light: Optical control of phonons in photoswitchable structures

We present a means of controlling phonons via optical tuning. Taking as a model an array of photoresponsive materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of an array of bistable harmonic oscillators with stochastic spring constants. Changing the inte...

Full description

Bibliographic Details
Main Authors: Grossman, Jeffrey C. (Contributor), Sklan, Sophia Robin (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2015-10-08T14:25:06Z.
Subjects:
Online Access:Get fulltext
LEADER 01535 am a22002173u 4500
001 99209
042 |a dc 
100 1 0 |a Grossman, Jeffrey C.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Sklan, Sophia Robin  |e contributor 
100 1 0 |a Grossman, Jeffrey C.  |e contributor 
700 1 0 |a Sklan, Sophia Robin  |e author 
245 0 0 |a Sound and noisy light: Optical control of phonons in photoswitchable structures 
260 |b American Physical Society,   |c 2015-10-08T14:25:06Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/99209 
520 |a We present a means of controlling phonons via optical tuning. Taking as a model an array of photoresponsive materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of an array of bistable harmonic oscillators with stochastic spring constants. Changing the intensity of light incident on the lattice directly controls the composition of the lattice and therefore the speed of sound. Furthermore, modulation of the phonon band structure at high frequencies results in a strong confinement of phonons. The applications of this regime for phonon waveguides, vibrational energy storage, and phononic transistors is examined. 
520 |a National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374) 
546 |a en 
655 7 |a Article 
773 |t Physical Review B