Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at √s = 8 TeV

This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy √s = 8 TeV. The performance of these al...

Full description

Bibliographic Details
Main Author: Taylor, Frank E. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2015-08-24T12:34:54Z.
Subjects:
Online Access:Get fulltext
LEADER 02122 am a22002053u 4500
001 98199
042 |a dc 
100 1 0 |a Taylor, Frank E.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Taylor, Frank E.  |e contributor 
245 0 0 |a Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at √s = 8 TeV 
260 |b Springer-Verlag,   |c 2015-08-24T12:34:54Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/98199 
520 |a This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy √s = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb[superscript −1]. An uncertainty on the offline reconstructed tau energy scale of 2-4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2-8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton-proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS. 
520 |a United States. Dept. of Energy 
520 |a National Science Foundation (U.S.) 
520 |a Brookhaven National Laboratory 
546 |a en_US 
655 7 |a Article 
773 |t The European Physical Journal C