A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation

We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we i...

Full description

Bibliographic Details
Main Authors: Knezevic, David (Contributor), Patera, Anthony T. (Contributor), Huynh, Dinh Bao Phuong (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: EDP Sciences, 2015-07-07T16:20:44Z.
Subjects:
Online Access:Get fulltext
LEADER 02185 am a22002413u 4500
001 97698
042 |a dc 
100 1 0 |a Knezevic, David  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Huynh, Dinh Bao Phuong  |e contributor 
100 1 0 |a Knezevic, David  |e contributor 
100 1 0 |a Patera, Anthony T.  |e contributor 
700 1 0 |a Patera, Anthony T.  |e author 
700 1 0 |a Huynh, Dinh Bao Phuong  |e author 
245 0 0 |a A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation 
260 |b EDP Sciences,   |c 2015-07-07T16:20:44Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/97698 
520 |a We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric systems. The method is based on static condensation at the interdomain level, a conforming eigenfunction "port" representation at the interface level, and finally Reduced Basis (RB) approximation of Finite Element (FE) bubble functions at the intradomain level. We show under suitable hypotheses that the RB Schur complement is close to the FE Schur complement: we can thus demonstrate the stability of the discrete equations; furthermore, we can develop inexpensive and rigorous (system-level) a posteriori error bounds. We present numerical results for model many-parameter heat transfer and elasticity problems with particular emphasis on the Online stage; we discuss flexibility, accuracy, computational performance, and also the effectivity of the a posteriori error bounds. 
520 |a United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-09-1-0613) 
520 |a MIT-Singapore International Design Center 
546 |a en_US 
655 7 |a Article 
773 |t ESAIM: Mathematical Modelling and Numerical Analysis