First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon

The mean free paths (MFPs) of energy carriers are of critical importance to the nano-engineering of better thermoelectric materials. Despite significant progress in the first-principles-based understanding of the spectral distribution of phonon MFPs in recent years, the spectral distribution of elec...

Full description

Bibliographic Details
Main Authors: Qiu, Bo (Contributor), Tian, Zhiting (Contributor), Vallabhaneni, Ajit (Author), Liao, Bolin (Contributor), Mendoza, Jonathan M. (Contributor), Restrepo, Oscar D. (Author), Ruan, Xiulin (Author), Chen, Gang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: IOP Publishing, 2015-06-12T13:54:04Z.
Subjects:
Online Access:Get fulltext
LEADER 02259 am a22003133u 4500
001 97386
042 |a dc 
100 1 0 |a Qiu, Bo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Qiu, Bo  |e contributor 
100 1 0 |a Tian, Zhiting  |e contributor 
100 1 0 |a Liao, Bolin  |e contributor 
100 1 0 |a Mendoza, Jonathan M.  |e contributor 
100 1 0 |a Chen, Gang  |e contributor 
700 1 0 |a Tian, Zhiting  |e author 
700 1 0 |a Vallabhaneni, Ajit  |e author 
700 1 0 |a Liao, Bolin  |e author 
700 1 0 |a Mendoza, Jonathan M.  |e author 
700 1 0 |a Restrepo, Oscar D.  |e author 
700 1 0 |a Ruan, Xiulin  |e author 
700 1 0 |a Chen, Gang  |e author 
245 0 0 |a First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon 
260 |b IOP Publishing,   |c 2015-06-12T13:54:04Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/97386 
520 |a The mean free paths (MFPs) of energy carriers are of critical importance to the nano-engineering of better thermoelectric materials. Despite significant progress in the first-principles-based understanding of the spectral distribution of phonon MFPs in recent years, the spectral distribution of electron MFPs remains unclear. In this work, we compute the energy-dependent electron scatterings and MFPs in silicon from first principles. The electrical conductivity accumulation with respect to electron MFPs is compared to that of the phonon thermal conductivity accumulation to illustrate the quantitative impact of nanostructuring on electron and phonon transport. By combining all electron and phonon transport properties from first principles, we predict the thermoelectric properties of the bulk and nanostructured silicon, and find that silicon with 20 nm nanograins can result in a higher than five times enhancement in their thermoelectric figure of merit as the grain boundaries scatter phonons more significantly than that of electrons due to their disparate MFP distributions. 
520 |a United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299) 
546 |a en_US 
655 7 |a Article 
773 |t EPL (Europhysics Letters)