Pressure and Phase Equilibria in Interacting Active Brownian Spheres

We derive a microscopic expression for the mechanical pressure P in a system of spherical active Brownian particles at density ρ. Our exact result relates P, defined as the force per unit area on a bounding wall, to bulk correlation functions evaluated far away from the wall. It shows that (i) P(ρ)...

Full description

Bibliographic Details
Main Authors: Solon, Alexandre P. (Author), Stenhammar, Joakim (Author), Wittkowski, Raphael (Author), Kardar, Mehran (Contributor), Kafri, Yariv (Author), Cates, Michael E. (Author), Tailleur, Julien (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2015-05-12T12:21:28Z.
Subjects:
Online Access:Get fulltext
LEADER 01769 am a22002653u 4500
001 96959
042 |a dc 
100 1 0 |a Solon, Alexandre P.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Kardar, Mehran  |e contributor 
700 1 0 |a Stenhammar, Joakim  |e author 
700 1 0 |a Wittkowski, Raphael  |e author 
700 1 0 |a Kardar, Mehran  |e author 
700 1 0 |a Kafri, Yariv  |e author 
700 1 0 |a Cates, Michael E.  |e author 
700 1 0 |a Tailleur, Julien  |e author 
245 0 0 |a Pressure and Phase Equilibria in Interacting Active Brownian Spheres 
260 |b American Physical Society,   |c 2015-05-12T12:21:28Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/96959 
520 |a We derive a microscopic expression for the mechanical pressure P in a system of spherical active Brownian particles at density ρ. Our exact result relates P, defined as the force per unit area on a bounding wall, to bulk correlation functions evaluated far away from the wall. It shows that (i) P(ρ) is a state function, independent of the particle-wall interaction; (ii) interactions contribute two terms to P, one encoding the slow-down that drives motility-induced phase separation, and the other a direct contribution well known for passive systems; and (iii) P is equal in coexisting phases. We discuss the consequences of these results for the motility-induced phase separation of active Brownian particles and show that the densities at coexistence do not satisfy a Maxwell construction on P. 
520 |a Engineering and Physical Sciences Research Council (Grant EP/J007404) 
520 |a National Science Foundation (U.S.) (Grant NSF PHY11-25925) 
546 |a en 
655 7 |a Article 
773 |t Physical Review Letters