On universal Lie nilpotent associative algebras

We study the quotient Qi(A) of a free algebra A by the ideal Mi (A) generated by the i th commutator of any elements. In particular, we completely describe such quotient for i=4 (for i 3 this was done previously by Feigin and Shoikhet). We also study properties of the ideals Mi(A), e.g. when Mi(A)Mj...

Full description

Bibliographic Details
Main Authors: Etingof, Pavel I. (Contributor), Kim, John (Contributor), Ma, Xiaoguang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier B.V., 2015-04-02T16:03:58Z.
Subjects:
Online Access:Get fulltext
LEADER 01179 am a22002293u 4500
001 96327
042 |a dc 
100 1 0 |a Etingof, Pavel I.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
100 1 0 |a Kim, John  |e contributor 
100 1 0 |a Ma, Xiaoguang  |e contributor 
700 1 0 |a Kim, John  |e author 
700 1 0 |a Ma, Xiaoguang  |e author 
245 0 0 |a On universal Lie nilpotent associative algebras 
260 |b Elsevier B.V.,   |c 2015-04-02T16:03:58Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/96327 
520 |a We study the quotient Qi(A) of a free algebra A by the ideal Mi (A) generated by the i th commutator of any elements. In particular, we completely describe such quotient for i=4 (for i 3 this was done previously by Feigin and Shoikhet). We also study properties of the ideals Mi(A), e.g. when Mi(A)Mj(A) is contained in M[subscript i+j-1](A) (by result of Gupta and Levin, it is always contained in M[subscript i+j-2](A)). 
520 |a National Science Foundation (U.S.) (NSF grant DMS-0504847) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Algebra