A Data-Driven Approach to Modeling Choice

We visit the following fundamental problem: For a 'generic' model of consumer choice (namely, distributions over preference lists) and a limited amount of data on how consumers actually make decisions (such as marginal preference information), how may one predict revenues from offering a p...

Full description

Bibliographic Details
Main Authors: Farias, Vivek F. (Contributor), Jagabathula, Srikanth (Contributor), Shah, Devavrat (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor), Sloan School of Management (Contributor)
Format: Article
Language:English
Published: Neural Information Processing Systems Foundation, 2015-02-20T15:15:23Z.
Subjects:
Online Access:Get fulltext
LEADER 01612 am a22002533u 4500
001 95439
042 |a dc 
100 1 0 |a Farias, Vivek F.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
100 1 0 |a Sloan School of Management  |e contributor 
100 1 0 |a Farias, Vivek F.  |e contributor 
100 1 0 |a Jagabathula, Srikanth  |e contributor 
100 1 0 |a Shah, Devavrat  |e contributor 
700 1 0 |a Jagabathula, Srikanth  |e author 
700 1 0 |a Shah, Devavrat  |e author 
245 0 0 |a A Data-Driven Approach to Modeling Choice 
260 |b Neural Information Processing Systems Foundation,   |c 2015-02-20T15:15:23Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/95439 
520 |a We visit the following fundamental problem: For a 'generic' model of consumer choice (namely, distributions over preference lists) and a limited amount of data on how consumers actually make decisions (such as marginal preference information), how may one predict revenues from offering a particular assortment of choices? This problem is central to areas within operations research, marketing and econometrics. We present a framework to answer such questions and design a number of tractable algorithms (from a data and computational standpoint) for the same. 
520 |a National Science Foundation (U.S.) (CAREER CNS 0546590) 
546 |a en_US 
655 7 |a Article 
773 |t Advances in Neural Information Processing Systems (NIPS) 22