Viscoelasticity of stepped interfaces

Using molecular dynamics modeling, we show that interfaces in sputter deposited Cu-Nb superlattices exhibit time-dependent elasticity, i.e., viscoelasticity, under shear loading. In the high temperature and small strain rate limit, the interfacial shear modulus approaches a value proportional to the...

Full description

Bibliographic Details
Main Authors: Demkowicz, Michael J. (Contributor), Skirlo, Scott A. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Institute of Physics (AIP), 2015-02-12T20:54:59Z.
Subjects:
Online Access:Get fulltext
LEADER 01478 am a22002533u 4500
001 94519
042 |a dc 
100 1 0 |a Demkowicz, Michael J.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Demkowicz, Michael J.  |e contributor 
100 1 0 |a Demkowicz, Michael J.  |e contributor 
100 1 0 |a Skirlo, Scott A.  |e contributor 
700 1 0 |a Skirlo, Scott A.  |e author 
245 0 0 |a Viscoelasticity of stepped interfaces 
260 |b American Institute of Physics (AIP),   |c 2015-02-12T20:54:59Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/94519 
520 |a Using molecular dynamics modeling, we show that interfaces in sputter deposited Cu-Nb superlattices exhibit time-dependent elasticity, i.e., viscoelasticity, under shear loading. In the high temperature and small strain rate limit, the interfacial shear modulus approaches a value proportional to the density of steps in the interface. It may therefore be possible to tailor the low-frequency shear moduli of interfaces by controlling their step densities. 
520 |a National Science Foundation (U.S.) (Grant 1150862) 
520 |a MIT International Science and Technology Initiatives (MISTI-Chile Seed Grant) 
520 |a MIT Energy Initiative (Summer Fellowship) 
546 |a en_US 
655 7 |a Article 
773 |t Applied Physics Letters