Jacobians of Noncommutative Motives

In this article one extends the classical theory of (intermediate) Jacobians to the "noncommutative world". Concretely, one constructs a Q-linear additive Jacobian functor N → J(N) from the category of noncommutative Chow motives to the category of abelian varieties up to isogeny, with the...

Full description

Bibliographic Details
Main Authors: Trigo Neri Tabuada, Goncalo Jo (Contributor), Marcolli, Matilde (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Independent University of Moscow, 2015-01-30T19:40:22Z.
Subjects:
Online Access:Get fulltext
LEADER 01601 am a22002053u 4500
001 93242
042 |a dc 
100 1 0 |a Trigo Neri Tabuada, Goncalo Jo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Trigo Neri Tabuada, Goncalo Jo  |e contributor 
700 1 0 |a Marcolli, Matilde  |e author 
245 0 0 |a Jacobians of Noncommutative Motives 
260 |b Independent University of Moscow,   |c 2015-01-30T19:40:22Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/93242 
520 |a In this article one extends the classical theory of (intermediate) Jacobians to the "noncommutative world". Concretely, one constructs a Q-linear additive Jacobian functor N → J(N) from the category of noncommutative Chow motives to the category of abelian varieties up to isogeny, with the following properties: (i) the first de Rham cohomology group of J(N) agrees with the subspace of the odd periodic cyclic homology of N which is generated by algebraic curves; (ii) the abelian variety J(perf[subscript dg](X)) (associated to the derived dg category perf[subscript dg](X) of a smooth projective k-scheme X) identifies with the product of all the intermediate algebraic Jacobians of X. As an application, every semi-orthogonal decomposition of the derived category perf(X) gives rise to a decomposition of the intermediate algebraic Jacobians of X. 
520 |a NEC Corporation (Award 2742738) 
520 |a Portuguese Science and Technology Foundation (PEst-OE/MAT/UI0297/2011) 
546 |a en_US 
655 7 |a Article 
773 |t Moscow Mathematical Journal