Quasisplit Hecke algebras and symmetric spaces

Let (G,K) be a symmetric pair over an algebraically closed field of characteristic different from 2, and let σ be an automorphism with square 1 of G preserving K. In this paper we consider the set of pairs (O,L) where O is a σ-stable K-orbit on the flag manifold of G and L is an irreducible K-equiva...

Full description

Bibliographic Details
Main Authors: Lusztig, George (Contributor), Vogan, David A. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Duke University Press, 2015-01-20T18:31:37Z.
Subjects:
Online Access:Get fulltext
LEADER 01613 am a22002173u 4500
001 93076
042 |a dc 
100 1 0 |a Lusztig, George  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Vogan, David A.  |e contributor 
100 1 0 |a Lusztig, George  |e contributor 
700 1 0 |a Vogan, David A.  |e author 
245 0 0 |a Quasisplit Hecke algebras and symmetric spaces 
260 |b Duke University Press,   |c 2015-01-20T18:31:37Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/93076 
520 |a Let (G,K) be a symmetric pair over an algebraically closed field of characteristic different from 2, and let σ be an automorphism with square 1 of G preserving K. In this paper we consider the set of pairs (O,L) where O is a σ-stable K-orbit on the flag manifold of G and L is an irreducible K-equivariant local system on O which is "fixed" by σ. Given two such pairs (O,L), (O',L'), with O' in the closure [bar over O] of O, the multiplicity space of L' in a cohomology sheaf of the intersection cohomology of [bar over O] with coefficients in L (restricted to O') carries an involution induced by σ, and we are interested in computing the dimensions of its +1 and −1 eigenspaces. We show that this computation can be done in terms of a certain module structure over a quasisplit Hecke algebra on a space spanned by the pairs (O,L) as above. 
520 |a National Science Foundation (U.S.) (Grant DMS-0758262) 
520 |a National Science Foundation (U.S.) (Grant DMS-0967272) 
546 |a en_US 
655 7 |a Article 
773 |t Duke Mathematical Journal