Mechanical Fluidity of Fully Suspended Biological Cells

Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity-hysteresivity normalized to the extremes of an elastic solid or a viscous liquid-can be extracted from, and compared among, multiple rheo...

Full description

Bibliographic Details
Main Authors: Maloney, John M (Author), Lehnhardt, Eric (Author), Long, Alexandra F (Author), Van Vliet, Krystyn J (Author), Van Vliet, Krystyn J. (Contributor), Maloney, John M. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: Elsevier, 2014-12-08T20:24:53Z.
Subjects:
Online Access:Get fulltext
LEADER 02962 am a22002893u 4500
001 92234
042 |a dc 
100 1 0 |a Maloney, John M.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Van Vliet, Krystyn J.  |e contributor 
100 1 0 |a Maloney, John M.  |e contributor 
700 1 0 |a Lehnhardt, Eric  |e author 
700 1 0 |a Long, Alexandra F.  |e author 
700 1 0 |a Van Vliet, Krystyn J.  |e author 
700 1 0 |a Van Vliet, Krystyn J.  |e author 
700 1 0 |a Maloney, John M.  |e author 
245 0 0 |a Mechanical Fluidity of Fully Suspended Biological Cells 
260 |b Elsevier,   |c 2014-12-08T20:24:53Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/92234 
520 |a Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity-hysteresivity normalized to the extremes of an elastic solid or a viscous liquid-can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature-now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion. 
520 |a Singapore-MIT Alliance for Research and Technology 
520 |a National Science Foundation (U.S.). Faculty Early Career Development (CAREER) Program (CBET-0644846)) 
520 |a National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics (Training Grant EB006348) 
546 |a en_US 
655 7 |a Article 
773 |t Biophysical Journal