Antibiotics induce redox-related physiological alterations as part of their lethality

Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This n...

Full description

Bibliographic Details
Main Authors: Martell, Jeffrey Daniel (Contributor), Takahashi, Noriko (Contributor), Vercruysse, Maarten (Contributor), Ting, Alice Y. (Contributor), Walker, Graham C. (Contributor), Dwyer, Daniel J. (Author), Belenky, Peter A. (Author), Yang, Jason H. (Author), MacDonald, I. Cody (Author), Chan, Tsz Yan Clement (Author), Lobritz, Michael A. (Author), Braff, Dana (Author), Schwarz, Eric G. (Author), Ye, Jonathan D. (Author), Pati, Mekhala (Author), Ralifo, Paul S. (Author), Allison, Kyle R. (Author), Khalil, Ahmad S. (Author), Collins, James J. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Biology (Contributor), Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: National Academy of Sciences (U.S.), 2014-12-01T15:00:42Z.
Subjects:
Online Access:Get fulltext
LEADER 03741 am a22004693u 4500
001 91947
042 |a dc 
100 1 0 |a Martell, Jeffrey Daniel  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Martell, Jeffrey Daniel  |e contributor 
100 1 0 |a Takahashi, Noriko  |e contributor 
100 1 0 |a Vercruysse, Maarten  |e contributor 
100 1 0 |a Ting, Alice Y.  |e contributor 
100 1 0 |a Walker, Graham C.  |e contributor 
700 1 0 |a Takahashi, Noriko  |e author 
700 1 0 |a Vercruysse, Maarten  |e author 
700 1 0 |a Ting, Alice Y.  |e author 
700 1 0 |a Walker, Graham C.  |e author 
700 1 0 |a Dwyer, Daniel J.  |e author 
700 1 0 |a Belenky, Peter A.  |e author 
700 1 0 |a Yang, Jason H.  |e author 
700 1 0 |a MacDonald, I. Cody  |e author 
700 1 0 |a Chan, Tsz Yan Clement  |e author 
700 1 0 |a Lobritz, Michael A.  |e author 
700 1 0 |a Braff, Dana  |e author 
700 1 0 |a Schwarz, Eric G.  |e author 
700 1 0 |a Ye, Jonathan D.  |e author 
700 1 0 |a Pati, Mekhala  |e author 
700 1 0 |a Ralifo, Paul S.  |e author 
700 1 0 |a Allison, Kyle R.  |e author 
700 1 0 |a Khalil, Ahmad S.  |e author 
700 1 0 |a Collins, James J.  |e author 
245 0 0 |a Antibiotics induce redox-related physiological alterations as part of their lethality 
260 |b National Academy of Sciences (U.S.),   |c 2014-12-01T15:00:42Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/91947 
520 |a Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. 
520 |a National Institutes of Health (U.S.). Pioneer Award (DP1OD003961) 
520 |a National Institutes of Health (U.S.) (R01CA021615) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the National Academy of Sciences of the United States of America