RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transi...

Full description

Bibliographic Details
Main Authors: Suleimanov, Yu.V (Author), Allen, Joshua W. (Contributor), Green, William H. (Contributor), Suleimanov, Yu. V. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor)
Format: Article
Language:English
Published: Elsevier B.V., 2014-10-31T17:28:13Z.
Subjects:
Online Access:Get fulltext
LEADER 01827 am a22002653u 4500
001 91253
042 |a dc 
100 1 0 |a Suleimanov, Yu.V.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Suleimanov, Yu. V.  |e contributor 
100 1 0 |a Allen, Joshua W.  |e contributor 
100 1 0 |a Green, William H.  |e contributor 
700 1 0 |a Allen, Joshua W.  |e author 
700 1 0 |a Green, William H.  |e author 
700 1 0 |a Suleimanov, Yu. V.  |e author 
245 0 0 |a RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics 
260 |b Elsevier B.V.,   |c 2014-10-31T17:28:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/91253 
520 |a We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. 
520 |a United States. Dept. of Energy (Office of Basic Energy Sciences under the Energy Frontier Research Center for Combustion Science (Grant No. DE-SC0001198)) 
520 |a United States. Dept. of Energy (Energy Frontier Research Center for Combustion Science, Combustion Energy Research Fellowship) 
520 |a King Abdullah University of Science and Technology (Award No. KUS-I1-010-01) 
546 |a en_US 
655 7 |a Article 
773 |t Computer Physics Communications