Casimir-Polder interaction for gently curved surfaces

We use a derivative expansion for gently curved surfaces to compute the leading and the next-to-leading curvature corrections to the Casimir-Polder interaction between a polarizable small particle and a nonplanar surface. While our methods apply to any homogeneous and isotropic surface, explicit res...

Full description

Bibliographic Details
Main Authors: Bimonte, Giuseppe (Author), Emig, Thorsten (Author), Kardar, Mehran (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2014-10-30T19:38:43Z.
Subjects:
Online Access:Get fulltext
LEADER 01266 am a22002053u 4500
001 91244
042 |a dc 
100 1 0 |a Bimonte, Giuseppe  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Kardar, Mehran  |e contributor 
700 1 0 |a Emig, Thorsten  |e author 
700 1 0 |a Kardar, Mehran  |e author 
245 0 0 |a Casimir-Polder interaction for gently curved surfaces 
260 |b American Physical Society,   |c 2014-10-30T19:38:43Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/91244 
520 |a We use a derivative expansion for gently curved surfaces to compute the leading and the next-to-leading curvature corrections to the Casimir-Polder interaction between a polarizable small particle and a nonplanar surface. While our methods apply to any homogeneous and isotropic surface, explicit results are presented here for perfect conductors. We show that the derivative expansion of the Casimir-Polder potential follows from a resummation of its perturbative series, for small in-plane momenta. We consider the retarded, nonretarded and classical high-temperature limits. 
520 |a National Science Foundation (U.S.) (Grant No. DMR-12-06323) 
546 |a en 
655 7 |a Article 
773 |t Physical Review D