An efficiently solvable quadratic program for stabilizing dynamic locomotion

We describe a whole-body dynamic walking controller implemented as a convex quadratic program. The controller solves an optimal control problem using an approximate value function derived from a simple walking model while respecting the dynamic, input, and contact constraints of the full robot dynam...

Full description

Bibliographic Details
Main Authors: Kuindersma, Scott (Contributor), Permenter, Frank Noble (Contributor), Tedrake, Russell Louis (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2014-10-14T14:20:31Z.
Subjects:
Online Access:Get fulltext
LEADER 01994 am a22002773u 4500
001 90913
042 |a dc 
100 1 0 |a Kuindersma, Scott  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Kuindersma, Scott  |e contributor 
100 1 0 |a Permenter, Frank Noble  |e contributor 
100 1 0 |a Tedrake, Russell Louis  |e contributor 
700 1 0 |a Permenter, Frank Noble  |e author 
700 1 0 |a Tedrake, Russell Louis  |e author 
245 0 0 |a An efficiently solvable quadratic program for stabilizing dynamic locomotion 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2014-10-14T14:20:31Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/90913 
520 |a We describe a whole-body dynamic walking controller implemented as a convex quadratic program. The controller solves an optimal control problem using an approximate value function derived from a simple walking model while respecting the dynamic, input, and contact constraints of the full robot dynamics. By exploiting sparsity and temporal structure in the optimization with a custom active-set algorithm, we surpass the performance of the best available off-the-shelf solvers and achieve 1kHz control rates for a 34-DOF humanoid. We describe applications to balancing and walking tasks using the simulated Atlas robot in the DARPA Virtual Robotics Challenge. 
520 |a United States. Air Force Research Laboratory (Contract FA8750-12-1-0321) 
520 |a National Science Foundation (U.S.) (Contract ERC-1028725) 
520 |a National Science Foundation (U.S.) (Contract IIS-1161909) 
520 |a National Science Foundation (U.S.) (Contract IIS-0746194) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA)