Sparse Filter Design Under a Quadratic Constraint: Low-Complexity Algorithms
This paper considers three problems in sparse filter design, the first involving a weighted least-squares constraint on the frequency response, the second a constraint on mean squared error in estimation, and the third a constraint on signal-to-noise ratio in detection. The three problems are unifie...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE),
2014-09-30T19:08:51Z.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | This paper considers three problems in sparse filter design, the first involving a weighted least-squares constraint on the frequency response, the second a constraint on mean squared error in estimation, and the third a constraint on signal-to-noise ratio in detection. The three problems are unified under a single framework based on sparsity maximization under a quadratic performance constraint. Efficient and exact solutions are developed for specific cases in which the matrix in the quadratic constraint is diagonal, block-diagonal, banded, or has low condition number. For the more difficult general case, a low-complexity algorithm based on backward greedy selection is described with emphasis on its efficient implementation. Examples in wireless channel equalization and minimum-variance distortionless-response beamforming show that the backward selection algorithm yields optimally sparse designs in many instances while also highlighting the benefits of sparse design. Texas Instruments Leadership University Consortium Program |
---|