Two Remarks on Skew Tableaux

This paper contains two results on the number f[superscript σ/τ] of standard skew Young tableaux of shape σ/τ. The first concerns generating functions for certain classes of "periodic" shapes related to work of Gessel-Viennot and Baryshnikov-Romik. The second result gives an evaluation of...

Full description

Bibliographic Details
Main Author: Stanley, Richard P. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Electronic Journal of Combinatorics, 2014-09-18T17:05:11Z.
Subjects:
Online Access:Get fulltext
LEADER 01111 am a22001813u 4500
001 89811
042 |a dc 
100 1 0 |a Stanley, Richard P.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Stanley, Richard P.  |e contributor 
245 0 0 |a Two Remarks on Skew Tableaux 
260 |b Electronic Journal of Combinatorics,   |c 2014-09-18T17:05:11Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89811 
520 |a This paper contains two results on the number f[superscript σ/τ] of standard skew Young tableaux of shape σ/τ. The first concerns generating functions for certain classes of "periodic" shapes related to work of Gessel-Viennot and Baryshnikov-Romik. The second result gives an evaluation of the skew Schur function s[subscript λ/μ](x) at x = (1,1/2[superscript 2k],1/3[superscript 2k],...) for k = 1,2,3 in terms of f[superscript σ/τ] for a certain skew shape σ/τ depending on λ/μ. 
520 |a National Science Foundation (U.S.) (Grant 0604423) 
546 |a en_US 
655 7 |a Article 
773 |t Electronic Journal of Combinatorics