Involutions on standard Young tableaux and divisors on metric graphs

We elaborate upon a bijection discovered by Cools, Draisma, Payne, and Robeva (2012) between the set of rectangular standard Young tableaux and the set of equivalence classes of chip configurations on certain metric graphs under the relation of linear equivalence. We present an explicit formula for...

Full description

Bibliographic Details
Main Authors: Agrawal, Rohit (Author), Musiker, Gregg (Author), Sotirov, Vladimir (Author), Wei, Fan (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Electronic Journal of Combinatorics, 2014-09-17T12:00:50Z.
Subjects:
Online Access:Get fulltext
LEADER 01543 am a22002413u 4500
001 89788
042 |a dc 
100 1 0 |a Agrawal, Rohit  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Wei, Fan  |e contributor 
700 1 0 |a Musiker, Gregg  |e author 
700 1 0 |a Sotirov, Vladimir  |e author 
700 1 0 |a Wei, Fan  |e author 
245 0 0 |a Involutions on standard Young tableaux and divisors on metric graphs 
260 |b Electronic Journal of Combinatorics,   |c 2014-09-17T12:00:50Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89788 
520 |a We elaborate upon a bijection discovered by Cools, Draisma, Payne, and Robeva (2012) between the set of rectangular standard Young tableaux and the set of equivalence classes of chip configurations on certain metric graphs under the relation of linear equivalence. We present an explicit formula for computing the v[subscript 0]-reduced divisors (representatives of the equivalence classes) associated to given tableaux, and use this formula to prove (i) evacuation of tableaux corresponds (under the bijection) to reflecting the metric graph, and (ii) conjugation of the tableaux corresponds to taking the Riemann-Roch dual of the divisor. 
520 |a National Science Foundation (U.S.) (Grant DMS-1001933) 
520 |a National Science Foundation (U.S.) (Grant DMS-1067183) 
520 |a National Science Foundation (U.S.) (Grant DMS-1148634) 
546 |a en_US 
655 7 |a Article 
773 |t Electronic Journal of Combinatorics