Study of a Model Equation in Detonation Theory

Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is $ u_{t}+\tfrac{1}{2}\left(u^{2}-uu\left(0^{-},t\...

Full description

Bibliographic Details
Main Authors: Faria, Luiz M. (Author), Kasimov, Aslan R. (Author), Rosales, Rodolfo R. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Society for Industrial and Applied Mathematics, 2014-09-12T16:50:28Z.
Subjects:
Online Access:Get fulltext
LEADER 01604 am a22002293u 4500
001 89464
042 |a dc 
100 1 0 |a Faria, Luiz M.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Rosales, Rodolfo R.  |e contributor 
700 1 0 |a Kasimov, Aslan R.  |e author 
700 1 0 |a Rosales, Rodolfo R.  |e author 
245 0 0 |a Study of a Model Equation in Detonation Theory 
260 |b Society for Industrial and Applied Mathematics,   |c 2014-09-12T16:50:28Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89464 
520 |a Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is $ u_{t}+\tfrac{1}{2}\left(u^{2}-uu\left(0^{-},t\right)\right)_{x}=f\left(x,u\left(0^{-},t\right)\right),\;x\le0,\; t>0. $ It describes a detonation shock at $x=0$ with the reaction zone in $x<0$. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos. 
520 |a National Science Foundation (U.S.) (Grant DMS-1115278) 
520 |a National Science Foundation (U.S.) (Grant DMS-1007967) 
520 |a National Institutes of Health (U.S.) (grant DMS-0907955) 
546 |a en_US 
655 7 |a Article 
773 |t SIAM Journal on Applied Mathematics