Mining TCGA Data Using Boolean Implications

Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alt...

Full description

Bibliographic Details
Main Authors: Sinha, Subarna (Author), Tsang, Emily K. (Author), Zeng, Haoyang (Contributor), Meister, Michela (Author), Dill, David L. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Public Library of Science, 2014-09-12T15:08:58Z.
Subjects:
Online Access:Get fulltext
LEADER 02105 am a22002293u 4500
001 89458
042 |a dc 
100 1 0 |a Sinha, Subarna  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Zeng, Haoyang  |e contributor 
700 1 0 |a Tsang, Emily K.  |e author 
700 1 0 |a Zeng, Haoyang  |e author 
700 1 0 |a Meister, Michela  |e author 
700 1 0 |a Dill, David L.  |e author 
245 0 0 |a Mining TCGA Data Using Boolean Implications 
260 |b Public Library of Science,   |c 2014-09-12T15:08:58Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89458 
520 |a Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression) from the glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from The Cancer Genome Atlas (TCGA). We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray​/TCGANetworks/. 
520 |a Stanford University (Chinese Undergraduate Visiting Research Program) 
546 |a en_US 
655 7 |a Article 
773 |t PLoS ONE