Disordered holographic systems: Marginal relevance of imperfection

We continue our study of quenched disorder in holographic systems, focusing on the effects of mild electric disorder. By studying the renormalization group evolution of the disorder distribution at subleading order in perturbations away from the clean fixed point, we show that electric disorder is m...

Full description

Bibliographic Details
Main Authors: Adams, Allan (Contributor), Yaida, Sho (Contributor)
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2014-09-05T13:24:13Z.
Subjects:
Online Access:Get fulltext
LEADER 01170 am a22002173u 4500
001 89193
042 |a dc 
100 1 0 |a Adams, Allan  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Theoretical Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Adams, Allan  |e contributor 
100 1 0 |a Yaida, Sho  |e contributor 
700 1 0 |a Yaida, Sho  |e author 
245 0 0 |a Disordered holographic systems: Marginal relevance of imperfection 
260 |b American Physical Society,   |c 2014-09-05T13:24:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89193 
520 |a We continue our study of quenched disorder in holographic systems, focusing on the effects of mild electric disorder. By studying the renormalization group evolution of the disorder distribution at subleading order in perturbations away from the clean fixed point, we show that electric disorder is marginally relevant in (2 + 1)-dimensional holographic conformal field theories. 
520 |a United States. Dept. of Energy (Contract DE-FC02-94ER40818) 
546 |a en 
655 7 |a Article 
773 |t Physical Review D