Addressing Genetic Tumor Heterogeneity through Computationally Predictive Combination Therapy

Recent tumor sequencing data suggest an urgent need to develop a methodology to directly address intratumoral heterogeneity in the design of anticancer treatment regimens. We use RNA interference to model heterogeneous tumors, and demonstrate successful validation of computational predictions for ho...

Full description

Bibliographic Details
Main Authors: Zhao, Boyang (Contributor), Pritchard, Justin R. (Contributor), Hemann, Michael (Contributor), Lauffenburger, Douglas A (Author)
Other Authors: Massachusetts Institute of Technology. Computational and Systems Biology Program (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Biology (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor), Lauffenburger, Douglas A. (Contributor)
Format: Article
Language:English
Published: American Association for Cancer Research, 2014-09-04T19:37:06Z.
Subjects:
Online Access:Get fulltext
LEADER 02624 am a22003133u 4500
001 89180
042 |a dc 
100 1 0 |a Zhao, Boyang  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computational and Systems Biology Program  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a Zhao, Boyang  |e contributor 
100 1 0 |a Pritchard, Justin R.  |e contributor 
100 1 0 |a Lauffenburger, Douglas A.  |e contributor 
100 1 0 |a Hemann, Michael  |e contributor 
700 1 0 |a Pritchard, Justin R.  |e author 
700 1 0 |a Hemann, Michael  |e author 
700 1 0 |a Lauffenburger, Douglas A  |e author 
245 0 0 |a Addressing Genetic Tumor Heterogeneity through Computationally Predictive Combination Therapy 
260 |b American Association for Cancer Research,   |c 2014-09-04T19:37:06Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89180 
520 |a Recent tumor sequencing data suggest an urgent need to develop a methodology to directly address intratumoral heterogeneity in the design of anticancer treatment regimens. We use RNA interference to model heterogeneous tumors, and demonstrate successful validation of computational predictions for how optimized drug combinations can yield superior effects on these tumors both in vitro and in vivo. Importantly, we discover here that for many such tumors knowledge of the predominant subpopulation is insufficient for determining the best drug combination. Surprisingly, in some cases, the optimal drug combination does not include drugs that would treat any particular subpopulation most effectively, challenging straightforward intuition. We confirm examples of such a case with survival studies in a murine preclinical lymphoma model. Altogether, our approach provides new insights about design principles for combination therapy in the context of intratumoral diversity, data that should inform the development of drug regimens superior for complex tumors. 
520 |a National Cancer Institute (U.S.) (NCI Integrative Cancer Biology Program (ICBP), Grant U54-CA112967-06) 
520 |a National Institutes of Health (U.S.) (NIH/National Institute of General Medical Sciences (NIGMS) Interdepartmental Biotechnology Training Program, 5T32GM008334) 
520 |a National Cancer Institute (U.S.) (Koch Institute Support (core) Grant P30-CA14051) 
546 |a en_US 
655 7 |a Article 
773 |t Cancer Discovery