Ribozyme-based insulator parts buffer synthetic circuits from genetic context

Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter t...

Full description

Bibliographic Details
Main Authors: Lou, Chunbo (Contributor), Stanton, Brynne (Contributor), Chen, Ying-Ja (Contributor), Munsky, Brian (Author), Voigt, Christopher A. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Synthetic Biology Center (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2014-08-26T16:37:55Z.
Subjects:
Online Access:Get fulltext
LEADER 02610 am a22003373u 4500
001 89067
042 |a dc 
100 1 0 |a Lou, Chunbo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Synthetic Biology Center  |e contributor 
100 1 0 |a Lou, Chunbo  |e contributor 
100 1 0 |a Stanton, Brynne  |e contributor 
100 1 0 |a Chen, Ying-Ja  |e contributor 
100 1 0 |a Voigt, Christopher A.  |e contributor 
700 1 0 |a Stanton, Brynne  |e author 
700 1 0 |a Chen, Ying-Ja  |e author 
700 1 0 |a Munsky, Brian  |e author 
700 1 0 |a Voigt, Christopher A.  |e author 
245 0 0 |a Ribozyme-based insulator parts buffer synthetic circuits from genetic context 
260 |b Nature Publishing Group,   |c 2014-08-26T16:37:55Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89067 
520 |a Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as 'insulator parts', is screened in Escherichia coli. We find that ribozymes that cleave the 5' untranslated region (5'-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs. 
520 |a Life Technologies, Inc. 
520 |a United States. Defense Advanced Research Projects Agency (DARPA CLIO N66001-12-C-4018) 
520 |a United States. Office of Naval Research (N00014-10-1-0245) 
520 |a National Science Foundation (U.S.) (CCF-0943385) 
520 |a National Institutes of Health (U.S.) (AI067699) 
520 |a National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SynBERC, SA5284-11210) 
546 |a en_US 
655 7 |a Article 
773 |t Nature Biotechnology