Nonuniversal bound states of two identical heavy fermions and one light particle

We study the behavior of the bound-state energy of a system consisting of two identical heavy fermions of mass M and a light particle of mass m. The heavy fermions interact with the light particle through a short-range two-body potential with positive s-wave scattering length a[subscript s]. We impo...

Full description

Bibliographic Details
Main Authors: Rittenhouse, Seth (Author), Blume, D. (Author), Sadeghpour, H. (Author), Safavi-Naini, Arghavan (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2014-08-18T13:46:41Z.
Subjects:
Online Access:Get fulltext
LEADER 01793 am a22002173u 4500
001 88741
042 |a dc 
100 1 0 |a Rittenhouse, Seth  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Safavi-Naini, Arghavan  |e contributor 
700 1 0 |a Blume, D.  |e author 
700 1 0 |a Sadeghpour, H.  |e author 
700 1 0 |a Safavi-Naini, Arghavan  |e author 
245 0 0 |a Nonuniversal bound states of two identical heavy fermions and one light particle 
260 |b American Physical Society,   |c 2014-08-18T13:46:41Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/88741 
520 |a We study the behavior of the bound-state energy of a system consisting of two identical heavy fermions of mass M and a light particle of mass m. The heavy fermions interact with the light particle through a short-range two-body potential with positive s-wave scattering length a[subscript s]. We impose a short-range boundary condition on the logarithmic derivative of the hyperradial wave function and show that, in the regime where Efimov states are absent, a nonuniversal three-body state cuts through the universal three-body states previously described by Kartavtsev and Malykh [O. I. Kartavtsev and A. V. Malykh, J. Phys. B 40, 1429 (2007)]. The presence of the nonuniversal state alters the behavior of the universal states in certain regions of the parameter space. We show that the existence of the nonuniversal state is predicted accurately by a simple quantum defect theory model that utilizes hyperspherical coordinates. An empirical two-state model is employed to quantify the coupling of the nonuniversal state to the universal states. 
520 |a National Science Foundation (U.S.) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review A